skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Alternate History: A Synthetic Ensemble of Ocean Chlorophyll Concentrations
Abstract Internal climate variability plays an important role in the abundance and distribution of phytoplankton in the global ocean. Previous studies using large ensembles of Earth system models (ESMs) have demonstrated their utility in the study of marine phytoplankton variability. These ESM large ensembles simulate the evolution of multiple alternate realities, each with a different phasing of internal climate variability. However, ESMs may not accurately represent real world variability as recorded via satellite and in situ observations of ocean chlorophyll over the past few decades. Observational records of surface ocean chlorophyll equate to a single ensemble member in the large ensemble framework, and this can cloud the interpretation of long‐term trends: are they externally forced, caused by the phasing of internal variability, or both? Here, we use a novel statistical emulation technique to place the observational record of surface ocean chlorophyll into the large ensemble framework. Much like a large initial condition ensemble generated with an ESM, the resulting synthetic ensemble represents multiple possible evolutions of ocean chlorophyll concentration, each with a different sampling of internal climate variability. We further demonstrate the validity of our statistical approach by recreating an ESM ensemble of chlorophyll using only a single ESM ensemble member. We use the synthetic ensemble to explore the interpretation of long‐term trends in the presence of internal variability and find a wider range of possible trends in chlorophyll due to the sampling of internal variability in subpolar regions than in subtropical regions.  more » « less
Award ID(s):
1752724
PAR ID:
10360073
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
35
Issue:
9
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We use a statistical emulation technique to construct synthetic ensembles of global and regional sea‐air carbon dioxide (CO2) flux from four observation‐based products over 1985–2014. Much like ensembles of Earth system models that are constructed by perturbing their initial conditions, our synthetic ensemble members exhibit different phasing of internal variability and a common externally forced signal. Our synthetic ensembles illustrate an important role for internal variability in the temporal evolution of global and regional CO2flux and produce a wide range of possible trends over 1990–1999 and 2000–2009. We assume a specific externally forced signal and calculate the rank of the observed trends within the distribution of statistically modeled synthetic trends during these periods. Over the decade 1990–1999, three of four observation‐based products exhibit small negative trends in globally integrated sea‐air CO2flux (i.e., enhanced ocean CO2absorption with time) that are within one standard deviation of the mean in their respective synthetic ensembles. Over the decade 2000–2009, however, three products show large negative trends in globally integrated sea‐air CO2flux that have a low rate of occurrence in their synthetic ensembles. The largest positive trends in global and Southern Ocean flux over 1990–1999 and the largest negative trends over 2000–2009 fall nearly two standard deviations away from the mean in their ensembles. Our approach provides a new perspective on the important role of internal variability in sea‐air CO2flux trends, and furthers understanding of the role of internal and external processes in driving observed sea‐air CO2flux variability. 
    more » « less
  2. null (Ed.)
    A reliable projection of future South Asian summer monsoon (SASM) benefits a large population in Asia. Using a 100-member ensemble of simulations by the Max Planck Institute Earth System Model (MPI-ESM) and a 50-member ensemble of simulations by the Canadian Earth System Model (CanESM2), we find that internal variability can overshadow the forced SASM rainfall trend, leading to large projection uncertainties for the next 15 to 30 years. We further identify that the Interdecadal Pacific Oscillation (IPO) is, in part, responsible for the uncertainties. Removing the IPO-related rainfall variations reduces the uncertainties in the near-term projection of the SASM rainfall by 13 to 15% and 26 to 30% in the MPI-ESM and CanESM2 ensembles, respectively. Our results demonstrate that the uncertainties in near-term projections of the SASM rainfall can be reduced by improving prediction of near-future IPO and other internal modes of climate variability. 
    more » « less
  3. Abstract Assessing uncertainty in future climate projections requires understanding both internal climate variability and external forcing. For this reason, single‐model initial condition large ensembles (SMILEs) run with Earth System Models (ESMs) have recently become popular. Here we present a new 20‐member SMILE with the Energy Exascale Earth System Model version 1 (E3SMv1‐LE), which uses a “macro” initialization strategy choosing coupled atmosphere/ocean states based on inter‐basin contrasts in ocean heat content (OHC). The E3SMv1‐LE simulates tropical climate variability well, albeit with a muted warming trend over the twentieth century due to overly strong aerosol forcing. The E3SMv1‐LE's initial climate spread is comparable to other (larger) SMILEs, suggesting that maximizing inter‐basin ocean heat contrasts may be an efficient method of generating ensemble spread. We also compare different ensemble spread across multiple SMILEs, using surface air temperature and OHC. The Community Earth system Model version 1, the only ensemble which utilizes a “micro” initialization approach perturbing only atmospheric initial conditions, yields lower spread in the first ∼30 years. The E3SMv1‐LE exhibits a relatively large spread, with some evidence for anthropogenic forcing influencing spread in the late twentieth century. However, systematic effects of differing “macro” initialization strategies are difficult to detect, possibly resulting from differing model physics or responses to external forcing. Notably, the method of standardizing results affects ensemble spread: control simulations for most models have either large background trends or multi‐centennial variability in OHC. This spurious disequlibrium behavior is a substantial roadblock to understanding both internal climate variability and its response to forcing. 
    more » « less
  4. Abstract Internal variability is the dominant cause of projection uncertainty of Arctic sea ice in the short and medium term. However, it is difficult to determine the realism of simulated internal variability in climate models, as observations only provide one possible realization while climate models can provide numerous different realizations. To enable a robust assessment of simulated internal variability of Arctic sea ice, we use a resampling technique to build synthetic ensembles for both observations and climate models, focusing on interannual variability, which is the dominant time scale of Arctic sea ice internal variability. We assess the realism of the interannual variability of Arctic sea ice cover as simulated by six models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) that provide large ensembles compared to four observational datasets. We augment the standard definition of model and observational consistency by representing the full distribution of resamplings, analogous to the distribution of variability that could have randomly occurred. We find that modeled interannual variability typically lies within observational uncertainty. The three models with the smallest mean state biases are the only ones consistent in the pan-Arctic for all months, but no model is consistent for all regions and seasons. Hence, choosing the right model for a given task as well as using internal variability as an additional metric to assess sea ice simulations is important. The fact that CMIP5 large ensembles broadly simulate interannual variability consistent within observational uncertainty gives confidence in the internal projection uncertainty for Arctic sea ice based on these models. Significance Statement The purpose of this study is to evaluate the historical simulated internal variability of Arctic sea ice in climate models. Determining model realism is important to have confidence in the projected sea ice evolution from these models, but so far only mean state and trends are commonly assessed metrics. Here we assess internal variability with a focus on the interannual variability, which is the dominant time scale for internal variability. We find that, in general, models agree well with observations, but as no model is within observational uncertainty for all months and locations, choosing the right model for a given task is crucial. Further refinement of internal variability realism assessments will require reduced observational uncertainty. 
    more » « less
  5. Earth system models suggest that anthropogenic climate change will influence marine phytoplankton over the coming century with light-limited regions becoming more productive and nutrient-limited regions less productive. Anthropogenic climate change can influence not only the mean state but also the internal variability around the mean state, yet little is known about how internal variability in marine phytoplankton will change with time. Here, we quantify the influence of anthropogenic climate change on internal variability in marine phytoplankton biomass from 1920 to 2100 using the Community Earth System Model 1 Large Ensemble (CESM1-LE). We find a significant decrease in the internal variability of global phytoplankton carbon biomass under a high emission (RCP8.5) scenario and heterogeneous regional trends. Decreasing internal variability in biomass is most apparent in the subpolar North Atlantic and North Pacific. In these high-latitude regions, bottom-up controls (e.g., nutrient supply, temperature) influence changes in biomass internal variability. In the biogeochemically critical regions of the Southern Ocean and the equatorial Pacific, bottom-up controls (e.g., light, nutrients) and top-down controls (e.g., grazer biomass) affect changes in phytoplankton carbon internal variability, respectively. Our results suggest that climate mitigation and adaptation efforts that account for marine phytoplankton changes (e.g., fisheries, marine carbon cycling) should also consider changes in phytoplankton internal variability driven by anthropogenic warming, particularly on regional scales. 
    more » « less