skip to main content


Title: Do Attention Heads in BERT Track Syntactic Dependencies?
We investigate the extent to which individual attention heads in pretrained transformer language models, such as BERT and RoBERTa, implicitly capture syntactic dependency relations. We employ two methods---taking the maximum attention weight and computing the maximum spanning tree---to extract implicit dependency relations from the attention weights of each layer/head, and compare them to the ground-truth Universal Dependency (UD) trees. We show that, for some UD relation types, there exist heads that can recover the dependency type significantly better than baselines on parsed English text, suggesting that some self-attention heads act as a proxy for syntactic structure. We also analyze BERT fine-tuned on two datasets---the syntax-oriented CoLA and the semantics-oriented MNLI---to investigate whether fine-tuning affects the patterns of their self-attention, but we do not observe substantial differences in the overall dependency relations extracted using our methods. Our results suggest that these models have some specialist attention heads that track individual dependency types, but no generalist head that performs holistic parsing significantly better than a trivial baseline, and that analyzing attention weights directly may not reveal much of the syntactic knowledge that BERT-style models are known to learn.  more » « less
Award ID(s):
1850208
NSF-PAR ID:
10233691
Author(s) / Creator(s):
 ; ; ;
Date Published:
Journal Name:
NY Academy of Sciences NLP, Dialog, and Speech Workshop
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Large Transformer-based models were shown to be reducible to a smaller number of self-attention heads and layers. We consider this phenomenon from the perspective of the lottery ticket hypothesis, using both structured and magnitude pruning. For fine-tuned BERT, we show that (a) it is possible to find subnetworks achieving performance that is comparable with that of the full model, and (b) similarly-sized subnetworks sampled from the rest of the model perform worse. Strikingly, with structured pruning even the worst possible subnetworks remain highly trainable, indicating that most pre-trained BERT weights are potentially useful. We also study the “good” subnetworks to see if their success can be attributed to superior linguistic knowledge, but find them unstable, and not explained by meaningful self-attention patterns. 
    more » « less
  2. null (Ed.)
    Larger language models have higher accuracy on average, but are they better on every single instance (datapoint)? Some work suggests larger models have higher out-of-distribution robustness, while other work suggests they have lower accuracy on rare subgroups. To understand these differences, we investigate these models at the level of individual instances. However, one major challenge is that individual predictions are highly sensitive to noise in the randomness in training. We develop statistically rigorous methods to address this, and after accounting for pretraining and finetuning noise, we find that our BERT-Large is worse than BERT-Mini on at least 1-4% of instances across MNLI, SST-2, and QQP, compared to the overall accuracy improvement of 2-10%. We also find that finetuning noise increases with model size and that instance-level accuracy has momentum: improvement from BERT-Mini to BERT-Medium correlates with improvement from BERT-Medium to BERT-Large. Our findings suggest that instance-level predictions provide a rich source of information; we therefore, recommend that researchers supplement model weights with model predictions. 
    more » « less
  3. null (Ed.)
    This paper describes the development of the first Universal Dependencies (UD) treebank for St. Lawrence Island Yupik, an endangered language spoken in the Bering Strait region. While the UD guidelines provided a general framework for our annotations, language-specific decisions were made necessary by the rich morphology of the polysynthetic language. Most notably, we annotated a corpus at the morpheme level as well as the word level. The morpheme level annotation was conducted using an existing morphological analyzer and manual disambiguation. By comparing the two resulting annotation schemes, we argue that morpheme-level annotation is essential for polysynthetic languages like St. Lawrence Island Yupik. Word-level annotation results in degenerate trees for some Yupik sentences and often fails to capture syntactic relations that can be manifested at the morpheme level. Dependency parsing experiments provide further support for morpheme-level annotation. Implications for UD annotation of other polysynthetic languages are discussed. 
    more » « less
  4. Pretrained contextualized language models such as BERT have achieved impressive results on various natural language processing benchmarks. Benefiting from multiple pretraining tasks and large scale training corpora, pretrained models can capture complex syntactic word relations. In this paper, we use the deep contextualized language model BERT for the task of ad hoc table retrieval. We investigate how to encode table content considering the table structure and input length limit of BERT. We also propose an approach that incorporates features from prior literature on table retrieval and jointly trains them with BERT. In experiments on public datasets, we show that our best approach can outperform the previous state-of-the-art method and BERT baselines with a large margin under different evaluation metrics. 
    more » « less
  5. Sequence-based neural networks show significant sensitivity to syntactic structure, but they still perform less well on syntactic tasks than tree-based networks. Such tree-based networks can be provided with a constituency parse, a dependency parse, or both. We evaluate which of these two representational schemes more effectively introduces biases for syntactic structure that increase performance on the subject-verb agreement prediction task. We find that a constituency-based network generalizes more robustly than a dependency-based one, and that combining the two types of structure does not yield further improvement. Finally, we show that the syntactic robustness of sequential models can be substantially improved by fine-tuning on a small amount of constructed data, suggesting that data augmentation is a viable alternative to explicit constituency structure for imparting the syntactic biases that sequential models are lacking. 
    more » « less