skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Duality and mock modularity
We derive a holomorphic anomaly equation for the Vafa-Wittenpartition function for twisted four-dimensional \mathcal{N} =4 𝒩 = 4 super Yang-Mills theory on \mathbb{CP}^{2} ℂ ℙ 2 for the gauge group SO(3) S O ( 3 ) from the path integral of the effective theory on the Coulomb branch.The holomorphic kernel of this equation, which receives contributionsonly from the instantons, is not modular but ‘mock modular’. Thepartition function has correct modular properties expected from S S -dualityonly after including the anomalous nonholomorphic boundary contributionsfrom anti-instantons. Using M-theory duality, we relate this phenomenonto the holomorphic anomaly of the elliptic genus of a two-dimensionalnoncompact sigma model and compute it independently in two dimensions.The anomaly both in four and in two dimensions can be traced to atopological term in the effective action of six-dimensional (2,0) ( 2 , 0 ) theory on the tensor branch. We consider generalizations to othermanifolds and other gauge groups to show that mock modularity is genericand essential for exhibiting duality when the relevant field space isnoncompact.  more » « less
Award ID(s):
1911298
PAR ID:
10233806
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
SciPost Physics
Volume:
9
Issue:
5
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We study the four-point function of the lowest-lying half-BPS operators in the $$ \mathcal{N} $$ N = 4 SU( N ) super-Yang-Mills theory and its relation to the flat-space four-graviton amplitude in type IIB superstring theory. We work in a large- N expansion in which the complexified Yang-Mills coupling τ is fixed. In this expansion, non-perturbative instanton contributions are present, and the SL(2 , ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the mass-deformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the four-point correlator at separated points. In a normalization where the two-point functions are proportional to N 2 − 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the four-point correlator are proportional to the non-holomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$ E\left(\frac{5}{2},\tau, \overline{\tau}\right) $$ E 5 2 τ τ ¯ , respectively. In the flat space limit, these terms match the corresponding terms in the type IIB S-matrix arising from R 4 and D 4 R 4 contact inter-actions, which, for the R 4 case, represents a check of AdS/CFT at finite string coupling. Furthermore, we present striking evidence that these results generalize so that, at order $$ {N}^{\frac{1}{2}-m} $$ N 1 2 − m with integer m ≥ 0, the expansion of the integrated correlator we study is a linear sum of non-holomorphic Eisenstein series with half-integer index, which are manifestly SL(2 , ℤ) invariant. 
    more » « less
  2. Geometric transitions between Calabi-Yau manifolds have proven to be a powerful tool in exploring the intricate and interconnected vacuum structure of string compactifications. However, their role in N=1, four-dimensional string compactifications remains relatively unexplored. In this work we present a novel proposal for transitioning the background geometry (including NS5-branes and holomorphic, slope-stable vector bundles) of four-dimensional, N=1 heterotic string compactifications through a conifold transition connecting Calabi-Yau threefolds. Our proposal is geometric in nature but informed by the heterotic effective theory. Central to this study is a description of how the cotangent bundles of the deformation and resolution manifolds in the conifold can be connected by an apparent small instanton transition with a 5-brane wrapping the small resolution curves. We show that by a “pair creation” process 5-branes can be generated simultaneously in the gauge and gravitational sectors and used to describe a coupled minimal change in the manifold and gauge sector. This observation leads us to propose dualities for 5-branes and gauge bundles in heterotic conifolds which we then confirm at the level of spectrum in large classes of examples. While the 5-brane duality is novel, we observe that the bundle correspondence has appeared before in the target space duality exhibited by (0, 2) gauged linear sigma models. Thus our work provides a geometric explanation of (0, 2) target space duality. 
    more » « less
  3. The Eichler-Selberg trace formulas express the traces of Hecke operators on a spaces of cusp forms in terms of weighted sums of Hurwitz-Kronecker class numbers. For cusp forms on $$\text {\rm SL}_2(\mathbb{Z}),$$ Zagier proved these formulas by cleverly making use of the weight 3/2 nonholomorphic Eisenstein series he discovered in the 1970s. The holomorphic part of this form, its so-called {\it mock modular form}, is the generating function for these class numbers. In this expository note we revisit Zagier's method, and we show how to obtain such formulas for congruence subgroups, working out the details for $$\Gamma_0(2)$$ and $$\Gamma_0(4).$$ The trace formulas fall out naturally from the computation of the Rankin-Cohen brackets of Zagier's mock modular form with specific theta functions. 
    more » « less
  4. A bstract We study modular invariants arising in the four-point functions of the stress tensor multiplet operators of the $$ \mathcal{N} $$ N = 4 SU( N ) super-Yang-Mills theory, in the limit where N is taken to be large while the complexified Yang-Mills coupling τ is held fixed. The specific four-point functions we consider are integrated correlators obtained by taking various combinations of four derivatives of the squashed sphere partition function of the $$ \mathcal{N} $$ N = 2 ∗ theory with respect to the squashing parameter b and mass parameter m , evaluated at the values b = 1 and m = 0 that correspond to the $$ \mathcal{N} $$ N = 4 theory on a round sphere. At each order in the 1 /N expansion, these fourth derivatives are modular invariant functions of ( τ, $$ \overline{\tau} $$ τ ¯ ). We present evidence that at half-integer orders in 1 /N , these modular invariants are linear combinations of non-holomorphic Eisenstein series, while at integer orders in 1 /N , they are certain “generalized Eisenstein series” which satisfy inhomogeneous Laplace eigenvalue equations on the hyperbolic plane. These results reproduce known features of the low-energy expansion of the four-graviton amplitude in type IIB superstring theory in ten-dimensional flat space and have interesting implications for the structure of the analogous expansion in AdS 5 × S 5 . 
    more » « less
  5. null (Ed.)
    A bstract In an earlier paper, we constructed the genus-two amplitudes for five external massless states in Type II and Heterotic string theory, and showed that the α ′ expansion of the Type II amplitude reproduces the corresponding supergravity amplitude to leading order. In this paper, we analyze the effective interactions induced by Type IIB superstrings beyond supergravity, both for U(1) R -preserving amplitudes such as for five gravitons, and for U(1) R -violating amplitudes such as for one dilaton and four gravitons. At each order in α ′, the coefficients of the effective interactions are given by integrals over moduli space of genus-two modular graph functions, generalizing those already encountered for four external massless states. To leading and sub-leading orders, the coefficients of the effective interactions D 2 ℛ 5 and D 4 ℛ 5 are found to match those of D 4 ℛ 4 and D 6 ℛ 4 , respectively, as required by non-linear supersymmetry. To the next order, a D 6 ℛ 5 effective interaction arises, which is independent of the supersymmetric completion of D 8 ℛ 4 , and already arose at genus one. A novel identity on genus-two modular graph functions, which we prove, ensures that up to order D 6 ℛ 5 , the five-point amplitudes require only a single new modular graph function in addition to those needed for the four-point amplitude. We check that the supergravity limit of U(1) R -violating amplitudes is free of UV divergences to this order, consistently with the known structure of divergences in Type IIB supergravity. Our results give strong consistency tests on the full five-point amplitude, and pave the way for understanding S-duality beyond the BPS-protected sector. 
    more » « less