Abstract False theta functions form a family of functions with intriguing modular properties and connections to mock modular forms. In this paper, we take the first step towards investigating modular transformations of higher rank false theta functions, following the example of higher depth mock modular forms. In particular, we prove that under quite general conditions, a rank two false theta function is determined in terms of iterated, holomorphic, Eichler-type integrals. This provides a new method for examining their modular properties and we apply it in a variety of situations where rank two false theta functions arise. We first consider generic parafermion characters of vertex algebras of type $$A_2$$ A 2 and $$B_2$$ B 2 . This requires a fairly non-trivial analysis of Fourier coefficients of meromorphic Jacobi forms of negative index, which is of independent interest. Then we discuss modularity of rank two false theta functions coming from superconformal Schur indices. Lastly, we analyze $${\hat{Z}}$$ Z ^ -invariants of Gukov, Pei, Putrov, and Vafa for certain plumbing $$\mathtt{H}$$ H -graphs. Along the way, our method clarifies previous results on depth two quantum modularity.
more »
« less
Some Eichler-Selberg Trace Formulas
The Eichler-Selberg trace formulas express the traces of Hecke operators on a spaces of cusp forms in terms of weighted sums of Hurwitz-Kronecker class numbers. For cusp forms on $$\text {\rm SL}_2(\mathbb{Z}),$$ Zagier proved these formulas by cleverly making use of the weight 3/2 nonholomorphic Eisenstein series he discovered in the 1970s. The holomorphic part of this form, its so-called {\it mock modular form}, is the generating function for these class numbers. In this expository note we revisit Zagier's method, and we show how to obtain such formulas for congruence subgroups, working out the details for $$\Gamma_0(2)$$ and $$\Gamma_0(4).$$ The trace formulas fall out naturally from the computation of the Rankin-Cohen brackets of Zagier's mock modular form with specific theta functions.
more »
« less
- Award ID(s):
- 2055118
- PAR ID:
- 10404472
- Date Published:
- Journal Name:
- Hardy-Ramanujan Journal
- Volume:
- Volume 45 - 2022
- ISSN:
- 2804-7370
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This article is in commemoration of Ramanujan's election as Fellow of The Royal Society 100 years ago, as celebrated at the October 2018 scientific meeting at the Royal Society in London. Ramanujan's last letter to Hardy, written shortly after his election, surrounds his mock theta functions. While these functions have been of great importance and interest in the decades following Ramanujan's death in 1920, it was unclear how exactly they fit into the theory of modular forms—Dyson called this ‘a challenge for the future’ at another centenary conference in Illinois in 1987, honouring the 100th anniversary of Ramanujan's birth. In the early 2000s, Zwegers finally recognized that Ramanujan had discovered glimpses of special families of non-holomorphic modular forms, which we now know to be Bruinier and Funke's harmonic Maass forms from 2004, the holomorphic parts of which are called mock modular forms. As of a few years ago, a fundamental question from Ramanujan's last letter remained, on a certain asymptotic relationship between mock theta functions and ordinary modular forms. The author, with Ono and Rhoades, revisited Ramanujan's asymptotic claim, and established a connection between mock theta functions and quantum modular forms, which were not defined until 90 years later in 2010 by Zagier. Here, we bring together past and present, and study the relationships between mock modular forms and quantum modular forms, with Ramanujan's mock theta functions as motivation. In particular, we highlight recent work of Bringmann–Rolen, Choi–Lim–Rhoades and Griffin–Ono–Rolen in our discussion. This article is largely expository, but not exclusively: we also establish a new interpretation of Ramanujan's radial asymptotic limits in the subject of topology. This article is part of a discussion meeting issue ‘Srinivasa Ramanujan: in celebration of the centenary of his election as FRS’.more » « less
-
Abstract In this paper, we analyze Fourier coefficients of automorphic forms on a finite cover G of an adelic split simply-laced group. Let $$\pi $$ be a minimal or next-to-minimal automorphic representation of G . We prove that any $$\eta \in \pi $$ is completely determined by its Whittaker coefficients with respect to (possibly degenerate) characters of the unipotent radical of a fixed Borel subgroup, analogously to the Piatetski-Shapiro–Shalika formula for cusp forms on $$\operatorname {GL}_n$$ . We also derive explicit formulas expressing the form, as well as all its maximal parabolic Fourier coefficient, in terms of these Whittaker coefficients. A consequence of our results is the nonexistence of cusp forms in the minimal and next-to-minimal automorphic spectrum. We provide detailed examples for G of type $$D_5$$ and $$E_8$$ with a view toward applications to scattering amplitudes in string theory.more » « less
-
For a fairly general family of L L -functions, we survey the known consequences of the existence of asymptotic formulas with power-saving error term for the (twisted) first and second moments of the central values in the family. We then consider in detail the important special case of the family of twists of a fixed cusp form by primitive Dirichlet characters modulo a prime q q , and prove that it satisfies such formulas. We derive arithmetic consequences: a positive proportion of central values L ( f ⊗ χ , 1 / 2 ) L(f\otimes \chi ,1/2) are non-zero, and indeed bounded from below; there exist many characters χ \chi for which the central L L -value is very large; the probability of a large analytic rank decays exponentially fast. We finally show how the second moment estimate establishes a special case of a conjecture of Mazur and Rubin concerning the distribution of modular symbols.more » « less
-
Abstract In this paper, we prove one divisibility of the Iwasawa–Greenberg main conjecture for the Rankin–Selberg product of a weight two cusp form and an ordinary complex multiplication form of higher weight, using congruences between Klingen Eisenstein series and cusp forms on $$\mathrm {GU}(3,1)$$ , generalizing an earlier result of the third-named author to allow nonordinary cusp forms. The main result is a key input in the third-named author’s proof of Kobayashi’s $$\pm $$ -main conjecture for supersingular elliptic curves. The new ingredient here is developing a semiordinary Hida theory along an appropriate smaller weight space and a study of the semiordinary Eisenstein family.more » « less
An official website of the United States government

