A bstract We study the fourpoint function of the lowestlying halfBPS operators in the $$ \mathcal{N} $$ N = 4 SU( N ) superYangMills theory and its relation to the flatspace fourgraviton amplitude in type IIB superstring theory. We work in a large N expansion in which the complexified YangMills coupling τ is fixed. In this expansion, nonperturbative instanton contributions are present, and the SL(2 , ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the massdeformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the fourpoint correlator at separated points. In a normalization where the twopoint functions are proportional to N 2 − 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the fourpoint correlator are proportional to the nonholomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$ E\left(\frac{5}{2},\tau, \overline{\tau}\right) $$ E 5 2 τ τ ¯ , respectively. In the flat space limit, these terms match the corresponding terms in the type IIB Smatrix arising from R 4 and D 4 R 4 contact interactions, which, for the R 4 case, represents a check of AdS/CFT at finite string coupling. Furthermore, we present striking evidence that these results generalize so that, at order $$ {N}^{\frac{1}{2}m} $$ N 1 2 − m with integer m ≥ 0, the expansion of the integrated correlator we study is a linear sum of nonholomorphic Eisenstein series with halfinteger index, which are manifestly SL(2 , ℤ) invariant.
more »
« less
New modular invariants in $$ \mathcal{N} $$ = 4 SuperYangMills theory
A bstract We study modular invariants arising in the fourpoint functions of the stress tensor multiplet operators of the $$ \mathcal{N} $$ N = 4 SU( N ) superYangMills theory, in the limit where N is taken to be large while the complexified YangMills coupling τ is held fixed. The specific fourpoint functions we consider are integrated correlators obtained by taking various combinations of four derivatives of the squashed sphere partition function of the $$ \mathcal{N} $$ N = 2 ∗ theory with respect to the squashing parameter b and mass parameter m , evaluated at the values b = 1 and m = 0 that correspond to the $$ \mathcal{N} $$ N = 4 theory on a round sphere. At each order in the 1 /N expansion, these fourth derivatives are modular invariant functions of ( τ, $$ \overline{\tau} $$ τ ¯ ). We present evidence that at halfinteger orders in 1 /N , these modular invariants are linear combinations of nonholomorphic Eisenstein series, while at integer orders in 1 /N , they are certain “generalized Eisenstein series” which satisfy inhomogeneous Laplace eigenvalue equations on the hyperbolic plane. These results reproduce known features of the lowenergy expansion of the fourgraviton amplitude in type IIB superstring theory in tendimensional flat space and have interesting implications for the structure of the analogous expansion in AdS 5 × S 5 .
more »
« less
 Award ID(s):
 1820651
 NSFPAR ID:
 10311715
 Date Published:
 Journal Name:
 Journal of High Energy Physics
 Volume:
 2021
 Issue:
 4
 ISSN:
 10298479
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this


A bstract When the SU( N ) $$ \mathcal{N} $$ N = 4 superYangMills (SYM) theory with complexified gauge coupling τ is placed on a round foursphere and deformed by an $$ \mathcal{N} $$ N = 2preserving mass parameter m , its free energy F ( m, τ, $$ \overline{\tau} $$ τ ¯ ) can be computed exactly using supersymmetric localization. In this work, we derive a new exact relation between the fourth derivative $$ {\partial}_m^4F\left(m,\tau, \overline{\tau}\right)\left{{}_m}_{=0}\right. $$ ∂ m 4 F m τ τ ¯ m = 0 of the sphere free energy and the integrated stresstensor multiplet fourpoint function in the $$ \mathcal{N} $$ N = 4 SYM theory. We then apply this exact relation, along with various other constraints derived in previous work (coming from analytic bootstrap, the mixed derivative $$ {\partial}_{\tau }{\partial}_{\overline{\tau}}{\partial}_m^2F\left(m,\tau, \overline{\tau}\right)\left{{}_m}_{=0}\right. $$ ∂ τ ∂ τ ¯ ∂ m 2 F m τ τ ¯ m = 0 , and type IIB superstring theory scattering amplitudes) to determine various perturbative terms in the large N and large ’t Hooft coupling λ expansion of the $$ \mathcal{N} $$ N = 4 SYM correlator at separated points. In particular, we determine the leading large λ term in the $$ \mathcal{N} $$ N = 4 SYM correlation function at order 1 /N 8 . This is three orders beyond the planar limit.more » « less

A bstract We compute 1 /λ corrections to the fourpoint functions of halfBPS operators in SU( N ) $$ \mathcal{N} $$ N = 4 superYangMills theory at large N and large ’t Hooft coupling λ = $$ {g}_{\mathrm{YM}}^2N $$ g YM 2 N using two methods. Firstly, we relate integrals of these correlators to derivatives of the mass deformed S 4 free energy, which was computed at leading order in large N and to all orders in 1 /λ using supersymmetric localization. Secondly, we use AdS/CFT to relate these 1 /λ corrections to higher derivative corrections to supergravity for scattering amplitudes of KaluzaKlein scalars in IIB string theory on AdS 5 × S 5 , which in the flat space limit are known from worldsheet calculations. These two methods match at the order corresponding to the tree level R 4 interaction in string theory, which provides a precise check of AdS/CFT beyond supergravity, and allow us to derive the holographic correlators to tree level D 4 R 4 order. Combined with constraints from [1], our results can be used to derive CFT data to oneloop D 4 R 4 order. Finally, we use AdS/CFT to fix these correlators in the limit where N is taken to be large while g YM is kept fixed. In this limit, we present a conjecture for the small mass limit of the S 4 partition function that includes all instanton corrections and is written in terms of the same Eisenstein series that appear in the study of string theory scattering amplitudes.more » « less

null (Ed.)A bstract The 1/2BPS Wilson loop in $$ \mathcal{N} $$ N = 4 supersymmetric YangMills theory is an important and wellstudied example of conformal defect. In particular, much work has been done for the correlation functions of operator insertions on the Wilson loop in the fundamental representation. In this paper, we extend such analyses to Wilson loops in the largerank symmetric and antisymmetric representations, which correspond to probe D3 and D5 branes with AdS 2 × S 2 and AdS 2 × S 4 worldvolume geometries, ending at the AdS 5 boundary along a onedimensional contour. We first compute the correlation functions of protected scalar insertions from supersymmetric localization, and obtain a representation in terms of multiple integrals that are similar to the eigenvalue integrals of the random matrix, but with important differences. Using ideas from the Fermi Gas formalism and the Clustering method, we evaluate their large N limit exactly as a function of the ’t Hooft coupling. The results are given by simple integrals of polynomials that resemble the Q functions of the Quantum Spectral Curve, with integration measures depending on the number of insertions. Next, we study the correlation functions of fluctuations on the probe D3 and D5 branes in AdS. We compute a selection of three and fourpoint functions from perturbation theory on the Dbranes, and show that they agree with the results of localization when restricted to supersymmetric kinematics. We also explain how the difference of the internal geometries of the D3 and D5 branes manifests itself in the localization computation.more » « less

null (Ed.)We derive a holomorphic anomaly equation for the VafaWittenpartition function for twisted fourdimensional \mathcal{N} =4 𝒩 = 4 super YangMills theory on \mathbb{CP}^{2} ℂ ℙ 2 for the gauge group SO(3) S O ( 3 ) from the path integral of the effective theory on the Coulomb branch.The holomorphic kernel of this equation, which receives contributionsonly from the instantons, is not modular but ‘mock modular’. Thepartition function has correct modular properties expected from S S dualityonly after including the anomalous nonholomorphic boundary contributionsfrom antiinstantons. Using Mtheory duality, we relate this phenomenonto the holomorphic anomaly of the elliptic genus of a twodimensionalnoncompact sigma model and compute it independently in two dimensions.The anomaly both in four and in two dimensions can be traced to atopological term in the effective action of sixdimensional (2,0) ( 2 , 0 ) theory on the tensor branch. We consider generalizations to othermanifolds and other gauge groups to show that mock modularity is genericand essential for exhibiting duality when the relevant field space isnoncompact.more » « less