skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Averaging over Narain moduli space
A bstract Recent developments involving JT gravity in two dimensions indicate that under some conditions, a gravitational path integral is dual to an average over an ensemble of boundary theories, rather than to a specific boundary theory. For an example in one dimension more, one would like to compare a random ensemble of two-dimensional CFT’s to Einstein gravity in three dimensions. But this is difficult. For a simpler problem, here we average over Narain’s family of two-dimensional CFT’s obtained by toroidal compactification. These theories are believed to be the most general ones with their central charges and abelian current algebra symmetries, so averaging over them means picking a random CFT with those properties. The average can be computed using the Siegel-Weil formula of number theory and has some properties suggestive of a bulk dual theory that would be an exotic theory of gravity in three dimensions. The bulk dual theory would be more like U(1) 2 D Chern-Simons theory than like Einstein gravity.  more » « less
Award ID(s):
1911298
PAR ID:
10233809
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2020
Issue:
10
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract A two-dimensional CFT dual to a semiclassical theory of gravity in three dimensions must have a large central charge c and a sparse low energy spectrum. This constrains the OPE coefficients and density of states of the CFT via the conformal bootstrap. We define an ensemble of CFT data by averaging over OPE coefficients subject to these bootstrap constraints, and show that calculations in this ensemble reproduce semiclassical 3D gravity. We analyze a wide variety of gravitational solutions, both in pure Einstein gravity and gravity coupled to massive point particles, including Euclidean wormholes with multiple boundaries and higher topology spacetimes with a single boundary. In all cases we find that the on-shell action of gravity agrees with the ensemble-averaged CFT at large c . The one-loop corrections also match in the cases where they have been computed. We also show that the bulk effective theory has random couplings induced by wormholes, providing a controlled, semiclassical realization of the mechanism of Coleman, Giddings, and Strominger. 
    more » « less
  2. A bstract We revisit the proposal that the ensemble average over free boson CFTs in two dimensions — parameterized by Narain’s moduli space — is dual to an exotic theory of gravity in three dimensions dubbed U(1) gravity. We consider flavored partition functions, where the usual genus g partition function is weighted by Wilson lines coupled to the conserved U(1) currents of these theories. These flavored partition functions obey a heat equation which relates deformations of the Riemann surface moduli to those of the chemical potentials which measure these U(1) charges. This allows us to derive a Siegel-Weil formula which computes the average of these flavored partition functions. The result takes the form of a “sum over geometries”, albeit with modifications relative to the unflavored case. 
    more » « less
  3. Abstract A central problem in any quantum theory of gravity is to explain the emergence of the classical spacetime geometry in some limit of a more fundamental, microscopic description of nature. The gauge/gravity-correspondence provides a framework in which this problem can, in principle, be addressed. This is a holographic correspondence which relates a supergravity theory in five-dimensional Anti-deSitter space to a strongly coupled superconformal gauge theory on its 4-dimensional flat Minkowski boundary. In particular, the classical geometry should therefore emerge from some quantum state of the dual gauge theory. Here we confirm this by showing how the classical metric emerges from a canonical state in the dual gauge theory. In particular, we obtain approximations to the Sasaki-Einstein metric underlying the supergravity geometry, in terms of an explicit integral formula involving the canonical quantum state in question. In the special case of toric quiver gauge theories we show that our results can be computationally simplified through a process of tropicalization. 
    more » « less
  4. null (Ed.)
    Recently, it has been found that Jackiw-Teitelboim (JT) gravity, which is a two-dimensional theory with bulk action − 1 / 2 ∫ d 2 x g ϕ ( R + 2 ) , is dual to a matrix model, that is, a random ensemble of quantum systems rather than a specific quantum mechanical system. In this article, we argue that a deformation of JT gravity with bulk action − 1 / 2 ∫ d 2 x g ( ϕ R + W ( ϕ ) ) is likewise dual to a matrix model. With a specific procedure for defining the path integral of the theory, we determine the density of eigenvalues of the dual matrix model. There is a simple answer if W (0) = 0, and otherwise a rather complicated answer. 
    more » « less
  5. null (Ed.)
    A bstract Holographic duality implies that the geometric properties of the gravitational bulk theory should be encoded in the dual field theory. These naturally include the metric on dimensions that become compact near the conformal boundary, as is the case for any asymptotically locally AdS n × $$ \mathbbm{S} $$ S k spacetime. Almost all previous work on metric reconstruction ignores these dimensions and would thus at most apply to dimensionally-reduced metrics. In this work, we generalize the approach to bulk reconstruction using light-cone cuts and propose a prescription to obtain the full higher-dimensional metric of generic spacetimes up to an overall conformal factor. We first extend the definition of light-cone cuts to include information about the asymptotic compact dimensions, and show that the full conformal metric can be recovered from these extended cuts. We then give a prescription for obtaining these extended cuts from the dual field theory. The location of the usual cuts can still be obtained from bulk-point singularities of correlators, and the new information in the extended cut can be extracted by using appropriate combinations of operators dual to Kaluza-Klein modes of the higher-dimensional bulk fields. 
    more » « less