This content will become publicly available on March 15, 2025
Several recent widespread temperature extremes across the United States (U.S.) have been associated with power outages, disrupting access to electricity at times that are critical for the health and well-being of communities. Building resilience to such extremes in our energy infrastructure needs a comprehensive understanding of their spatial and temporal characteristics. In this study, we systematically quantify the frequency, extent, duration, and intensity of widespread temperature extremes and their associated energy demand in the six North American Electric Reliability Corporation regions using ERA5 reanalysis data. We show that every region has experienced hot or cold extremes that affected nearly their entire extent and such events were associated with substantially higher energy demand, resulting in simultaneous stress across the entire electric gird. The western U.S. experienced significant increases in the frequency (123%), extent (32%), duration (55%) and intensity (29%) of hot extremes and Texas experienced significant increases in the frequency (132%) of hot extremes. The frequency of cold extremes has decreased across most regions without substantial changes in other characteristics. Using power outage data, we show that recent widespread extremes in nearly every region have coincided with power outages, and such outages account for between 12%–52% of all weather-related outages in the past decade depending on the region. Importantly, we find that solar potential is significantly higher during widespread hot extremes in all six regions and during widespread cold extremes in five of the six regions. Further, wind potential is significantly higher during widespread hot or cold extremes in at least three regions. Our findings indicate that increased solar and wind capacity could be leveraged to meet the higher demand for energy during such widespread extremes, improving the resilience and reliability of our energy systems in addition to limiting carbon emissions.
more » « less- Award ID(s):
- 1934383
- PAR ID:
- 10499052
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 19
- Issue:
- 4
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- 044018
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)The electrical power system is the backbone of our nations critical infrastructure. It has been designed to withstand single component failures based on a set of reliability metrics which have proven acceptable during normal operating conditions. However, in recent years there has been an increasing frequency of extreme weather events. Many have resulted in widespread long-term power outages, proving reliability metrics do not provide adequate energy security. As a result, researchers have focused their efforts resilience metrics to ensure efficient operation of power systems during extreme events. A resilient system has the ability to resist, adapt, and recover from disruptions. Therefore, resilience has demonstrated itself as a promising concept for currently faced challenges in power distribution systems. In this work, we propose an operational resilience metric for modern power distribution systems. The metric is based on the aggregation of system assets adaptive capacity in real and reactive power. This metric gives information to the magnitude and duration of a disturbance the system can withstand. We demonstrate resilience metric in a case study under normal operation and during a power contingency on a microgrid. In the future, this information can be used by operators to make more informed decisions based on system resilience in an effort to prevent power outages.more » « less
-
Large-scale damage to the power infrastructure from hurricanes and high-wind events can have devastating ripple effects on infrastructure, the broader economy, households, com- munities, and regions. Using Hurricane Irma’s impact on Florida as a case study, we examined: (1) differences in electric power outages and restoration rates between urban and rural counties; (2) the duration of electric power outages in counties exposed to tropical storm force winds versus hurricane Category 1 force winds; and (3) the rela- tionship between the duration of power outage and socioeconomic vulnerability. We used power outage data for the period September 9, 2017–September 29, 2017. At the peak of the power outages following Hurricane Irma, over 36% of all accounts in Florida were without electricity. We found that the rural counties, predominantly served by rural electric cooperatives and municipally owned utilities, experienced longer power outages and much slower and uneven restoration times. Results of three spatial lag models show that large percentages of customers served by rural electric cooperatives and municipally owned utilities were a strong predictor of the duration of extended power outages. There was also a strong positive association across all three models between power outage duration and urban/rural county designation. Finally, there is positive spatial dependence between power outages and several social vulnerability indicators. Three socioeconomic variables found to be statistically significant highlight three different aspects of vulnerability to power outages: minority groups, population with sensory, physical and mental disability, and economic vulnerability expressed as unemployment rate. The findings from our study have broader planning and policy relevance beyond our case study area, and highlight the need for additional research to deepen our understanding of how power restoration after hurricanes contributes to and is impacted by the socioeconomic vulnerabilities of communities.more » « less
-
Climate-induced extreme weather events, as well as other natural and human-caused disasters, have the potential to increase the duration and frequency of large power outages. Resilience, in the form of supplying a small amount of power to homes and communities, can mitigate outage consequences by sustaining critical electricity-dependent services. Public decisions about investing in resilience depend, in part, on how much residential customers value those critical services. Here we develop a method to estimate residential willingness-to-pay for back-up electricity services in the event of a large 10-day blackout during very cold winter weather, and then survey a sample of 483 residential customers across northeast USA using that method. Respondents were willing to pay US$1.7–2.3/kWh to sustain private demands and US$19–29/day to support their communities. Previous experience with long-duration outages and the framing of the cause of the outage (natural or human-caused) did not affect willingness-to-pay.more » « less
-
Abstract Aggregated community-scale data could be harnessed to provide insights into the disparate impacts of managed power outages, burst pipes, and food inaccessibility during extreme weather events. During the winter storm that brought historically low temperatures, snow, and ice to the entire state of Texas in February 2021, Texas power-generating plant operators resorted to rolling blackouts to prevent collapse of the power grid when power demand overwhelmed supply. To reveal the disparate impact of managed power outages on vulnerable subpopulations in Harris County, Texas, which encompasses the city of Houston, we collected and analyzed community-scale big data using statistical and trend classification analyses. The results highlight the spatial and temporal patterns of impacts on vulnerable subpopulations in Harris County. The findings show a significant disparity in the extent and duration of power outages experienced by low-income and minority groups, suggesting the existence of inequality in the management and implementation of the power outage. Also, the extent of burst pipes and disrupted food access, as a proxy for storm impact, were more severe for low-income and minority groups. Insights provided by the results could form a basis from which infrastructure operators might enhance social equality during managed service disruptions in such events. The results and findings demonstrate the value of community-scale big data sources for rapid impact assessment in the aftermath of extreme weather events.more » « less
-
Abstract Climate change and global urbanization have often been anticipated to increase future population exposure (frequency and intensity) to extreme weather over the coming decades. Here we examine how changes in urban land extent, population, and climate will respectively and collectively affect spatial patterns of future population exposures to climate extremes (including hot days, cold days, heavy rainfalls, and severe thunderstorm environments) across the continental U.S. at the end of the 21st century. Different from common impressions, we find that urban land patterns can sometimes reduce rather than increase population exposures to climate extremes, even heat extremes, and that spatial patterns instead of total quantities of urban land are more influential to population exposures. Our findings lead to preliminary suggestions for embedding long-term climate resilience in urban and regional land-use system designs, and strongly motivate searches for optimal spatial urban land patterns that can robustly moderate population exposures to climate extremes throughout the 21st century.