skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of Solar-Powered Battery Systems for Individuals Using Electricity-Dependent Medical Devices in Puerto Rico Following Hurricane Maria
Abstract Objectives: To determine if solar-powered battery systems could be successfully used for electricity-dependent medical devices by families during a power outage. Methods: We assessed the use of and satisfaction with solar-powered battery systems distributed to 15 families following Hurricane Maria in rural Puerto Rico. Interviews were conducted in July 2018, 3 mo following distribution of the systems. Results: The solar-powered battery systems powered refrigeration for medications and prescribed diets, asthma therapy, inflatable mattresses to prevent bedsores, and continuous positive airway pressure machines for sleep apnea. Despite some system problems, such as inadequate power, defective cables, and blown fuses, families successfully dealt with these issues with some outside help. Almost all families were pleased with the systems and a majority would recommend solar-powered battery systems to a neighbor. Conclusions: Families accepted and successfully used solar-powered battery systems to power medical devices. Solar-powered battery systems should be considered as alternatives to generators for power outages after hurricanes and other disasters. Additional research and analysis are needed to inform policy on increasing access to such systems.  more » « less
Award ID(s):
1832287
PAR ID:
10294269
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Disaster Medicine and Public Health Preparedness
ISSN:
1935-7893
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advancements in wearable technology have improved lifestyle and medical practices, enabling personalized care ranging from fitness tracking, to real-time health monitoring, to predictive sensing. Wearable devices serve as an interface between humans and technology; however, this integration is far from seamless. These devices face various limitations such as size, biocompatibility, and battery constraints wherein batteries are bulky, are expensive, and require regular replacement. On-body energy harvesting presents a promising alternative to battery power by utilizing the human body’s continuous generation of energy. This review paper begins with an investigation of contemporary energy harvesting methods, with a deep focus on piezoelectricity. We then highlight the materials, configurations, and structures of such methods for self-powered devices. Here, we propose a novel combination of thin-film composites, kirigami patterns, and auxetic structures to lay the groundwork for an integrated piezoelectric system to monitor and sense. This approach has the potential to maximize energy output by amplifying the piezoelectric effect and manipulating the strain distribution. As a departure from bulky, rigid device design, we explore compositions and microfabrication processes for conformable energy harvesters. We conclude by discussing the limitations of these harvesters and future directions that expand upon current applications for wearable technology. Further exploration of materials, configurations, and structures introduce interdisciplinary applications for such integrated systems. Considering these factors can revolutionize the production and consumption of energy as wearable technology becomes increasingly prevalent in everyday life. 
    more » « less
  2. null (Ed.)
    Renewable energy sources such as solar and wind provide an effective solution for reducing dependency on conventional power generation and increasing the reliability and quality of power systems. Presented in this paper are design and implementation of a laboratory scale solar microgrid cyber-physical system (CPS) with wireless data monitoring as a teaching tool in the engineering technology curriculum. In the system, the solar panel, battery, charge controller, and loads form the physical layer, while the sensors, communication networks, supervisory control and data acquisition systems (SCADA) and control systems form the cyber layer. The physical layer was seamlessly integrated with the cyber layer consisting of control and communication. The objective was to create a robust CPS platform and to use the system to promote interest in and knowledge of renewable energy among university students. Experimental results showed that the maximum power point tracking (MPPT) charge controller provided the loads with power from the solar panel and used additional power to charge the rechargeable battery. Through the system, students learned and mastered key concepts and knowledge of multi-disciplinary areas including data sampling and acquisition, analog to digital conversion, solar power, battery charging, control, embedded systems and software programing. It is a valuable teaching resource for students to study renewable energy in CPS. 
    more » « less
  3. Wearable and implantable medical devices ranging from wellness monitors to deep brain stimulators are becoming increasingly vital and ubiquitous. Such devices continuously take measurements, which consumes battery. The power consumption is proportional to the amount of information collected and with the frequency of data collection. High power consumption leads to rapid discharging of battery limiting the usage of these devices. These signals are often transmitted wirelessly for analysis, as well as to keep track of the user’s record, which also significantly increases power consumption. In this project, we evaluated adaptively modifying the rate of data collection on these devices, in other words, the sampling rate, for electrophysiological monitoring as the relevance of the signal changes in time. We carried out these tests using a proof-of-concept prototype developed for this project. In particular, we reviewed the effects of such adaptive sampling on intracellular potentials, and motor unit action potentials (MUAPs). By doing so, we were able to reduce the amount of data by 48.95% and power by 41.50% for the MUAPs with an 8% sample loss within MUAPs, and by 69.20% and 57.14% for intracellular potentials with a 6.75% sample loss. 
    more » « less
  4. The emergence of the Internet of Things and pervasive sensor networks have generated a surge of research in energy scavenging techniques. We know well that harvesting RF, solar, or kinetic energy enables the creation of battery-free devices that can be used where frequent battery changes or dedicated power lines are impractical. One unusual yet ubiquitous source of power is soil (earth itself) - or more accurately, bacterial communities in soil. Microbial fuel cells (MFCs) are electrochemical cells that harness the activities of microbes that naturally occur in soil, wetlands, and wastewater. MFCs have been a topic of research in environmental engineering and microbiology for decades, but are a relatively new topic in electronics design and research. Most low-power electronics have traditionally opted for batteries, RF energy, or solar cells. This is changing, however, as the limitations and costs of these energy sources hamper our ability to deploy useful systems that last for decades in challenging environments. If large-scale, long-term applications like underground infrastructure monitoring, smart farming, and sensing for conservation are to be possible, we must rethink the energy source. 
    more » « less
  5. Communication presents a critical challenge for emerging intermittently powered batteryless sensors. Batteryless devices that operate entirely on harvested energy often experience frequent, unpredictable power outages and have trouble keeping time accurately. Consequently, effective communication using today’s low-power wireless network standards and protocols becomes difficult, particularly because existing standards are usually designed to support reliably powered devices with predictable node availability and accurate timekeeping capabilities for connection and congestion management. In this article, we present Greentooth, a robust and energy-efficient wireless communication protocol for intermittently powered sensor networks. It enables reliable communication between a receiver and multiple batteryless sensors using Time Division Multiple Access–style scheduling and low-power wake-up radios for synchronization. Greentooth employs lightweight and energy-efficient connections that are resilient to transient power outages, while significantly improving network reliability, throughput, and energy efficiency of both the battery-free sensor nodes and the receiver—which could be untethered and energy constrained. We evaluate Greentooth using a custom-built batteryless sensor prototype on synthetic and real-world energy traces recorded from different locations in a garden across different times of the day. Results show that Greentooth achieves 73% and 283% more throughput compared to Asynchronous Wake-up on Demand MAC and Receiver-Initiated Consecutive Packet Transmission Wake-up Radios, respectively, under intermittent ambient solar energy and over 2× longer receiver lifetime. 
    more » « less