Metal-organic frameworks (MOF) are an emerging class of microporous materials with promising applications. MOF nanocrystals, and their assembled super-structures, can display unique properties and reactivities when compared with their bulk analogues. MOF nanostructures of 0-D, 2-D, and 3-D dimensions can be routinely obtained by controlling reaction conditions and ligand additives, while formation of 1-D MOF nanocrystals (nanowires and nanorods) and super-structures has been relatively rare. We report here a facile templated interfacial synthesis methodology for the preparation of a series of 1-D MOF nano- and micro-structures with precisely controlled shapes and sizes. Specifically, by applying track-etched polycarbonate (PCTE) membranes as the templates and at the oil/water interface, we rapidly and reproducibly synthesize zeolitic imidazolate framework-8 (ZIF-8) and ZIF-67 nano- and micro structures of sizes ranging from 10 nm to 20 μm. We also identify a size confinement effect on MOF crystal growth, which leads to single crystals under the most restricted conditions and inter-grown polycrystals at larger template pore sizes, as well as surface directing effects that influence the crystallographic preferred orientation. Our findings provide a potentially generalizable method for controlling the size, morphology, and crystal orientations of MOF nanomaterials, as well as offering fundamental understanding into MOF crystal growth more »
- Award ID(s):
- 2101535
- Publication Date:
- NSF-PAR ID:
- 10234531
- Journal Name:
- Communications Chemistry
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2399-3669
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
INTRODUCTION: Orthopedic implants are important therapeutic devices for the management of a wide range of orthopedic conditions. However, bacterial infections of orthopedic implants remain a major problem, and not an uncommon one, leading to an increased rate of osteomyelitis, sepsis, implant failure and dysfunction, etc. Treating these infections is more challenging as the causative organism protects itself by the production of a biofilm over the implant’s surface (1). Infections start by the adhesion and colonization of pathogenic bacteria such as Staphylococcus aureus (SA), Staphylococcus epidermidis (SE), Escherichia coli (E. coli), Methicillin-Resistant Staphylococcus aureus (MRSA), and Multi-Drug Resistant Escherichia coli (MDR E. coli) on the implant’s surfaces. Specifically, Staphylococcus comprises up to two-thirds of all pathogens involved in orthopedic implant infections (2). However, bacterial surface adhesion is a complex process influenced by several factors such as chemical composition, hydrophobicity, magnetization, surface charge, and surface roughness of the implant (3). Considering the intimate association between bacteria and the implant surface, we measured the effect of stainless-steel surface properties on bacterial surface attachment and subsequent formation of biofilms controlling above mentioned factors. METHODS: The prominent bacteria responsible for orthopedic implant infections (SA, SE, E. coli, MRSA, and MDR E. coli) were used inmore »
-
Statement of Purpose: Orthopedic implants are important therapeutic devices for the management of a wide range of orthopedic conditions. However, bacterial infections of orthopedic implants remain a major problem, and not an uncommon one, leading to an increased rate of osteomyelitis, sepsis, implant failure and dysfunction, etc. Treating these infections is more challenging as the causative organism protects itself by the production of a biofilm over the implant’s surface (1). Infections start by the adhesion and colonization of pathogenic bacteria such as Staphylococcus aureus (SA), Staphylococcus epidermidis (SE), Escherichia coli (E. coli), Methicillin-Resistant Staphylococcus aureus (MRSA), and Multi-Drug Resistant Escherichia coli (MDR E. coli) on the implant’s surfaces. Specifically, Staphylococcus comprises up to two-thirds of all pathogens involved in orthopedic implant infections (2). However, bacterial surface adhesion is a complex process influenced by several factors such as chemical composition, hydrophobicity, magnetization, surface charge, and surface roughness of the implant (3). Considering the intimate association between bacteria and the implant surface, we measured the effect of stainless-steel surface properties on bacterial surface attachment and subsequent formation of biofilms controlling above mentioned factors. Method: The prominent bacteria responsible for orthopedic implant infections (SA, SE, E. coli, MRSA, and MDR E. coli) weremore »
-
Polymer nanocomposites have been sought after for their light weight, high performance (strength-to-mass ratio, renewability, etc.), and multi-functionality (actuation, sensing, protection against lightning strikes, etc.). Nano-/micro-engineering has achieved such advanced properties by controlling crystallinity, phases, and interfaces/interphases; hierarchical structuring, often bio-inspired, has been also implemented. While driven by the advanced properties of nanofillers, properties of polymer nanocomposites are critically affected by their structuring and interfaces/interphases due to their small size (< ~50 nm) and large surface area per volume. Measures of their property improvement by nanofiller addition are often smaller than theoretically predicted. Currently, application of these novel engineered materials is limited because these materials cannot often be made in large sizes without compromising nano-scale organization, and because their multi-scale structure-property relationships are not well understood. In this work, we study precise and fast nanofiller structuring with non-contact and energy-efficient application of oscillating magnetic fields. Magnetic assembly is a promising, scalable method to deliver bulk amount of nanocomposites while maintaining organized nanofiller structure throughout the composite volume. In the past, we have demonstrated controlled alignment of nanofillers with tunable inter-assembly distances with application of oscillating one-dimentional magnetic fields (~100s of G), by taking advantage of both magnetic attraction and repulsion.more »
-
Development of quantum information processing requires realization of solid state structures able to manipulate light or matter quantum bits. One of the promising candidates for been active elements of such solid-state platform are color centers in diamond. The most famous nitrogen-vacancy color center has number of attractive features and found a lot of applications in sensing and imaging. Still, it has number of considerable disadvantages, among which it sensitivity to the surface damages and thus its incompatibility with nanostructures. On another side implementation of nano- and micro- structures enabled considerable progress in manipulation of light quanta. In particular photonic crystal cavities allowed to realize strong coupling of cavity and spin system. This led to demonstration of efficient light collection and realization of simple quantum gates with artificial or real atoms. Novel color centers such as silicon-vacancy or germanium-vacancy color center due to inversion symmetry of the electron structure are not sensitive to the surface damages and presence of surface nearby. Thus, those are perfect candidates for been combined with photonic crystal structures. Novel technologies enabled growing of the nanodiamonds of ultra-small size having well-defined color center inside. Along with techniques to position those precisely on the nano- and micro structuresmore »
-
The applications of semiconductor nanocrystals in optoelectronics are based on the unique characteristic of quantum confinement. There is great interest to tailor the performance of optoelectronic nanodevices and systems through the control of the sizes of nanocrystals. In this work, we develop a general mathematical formulation for the growth of a crystal/particle in a liquid solution, which takes account of the combinational effect of diffusion-limited growth and reaction-limited growth, and formulate the growth equations for the size of a cubic crystal grown under three different scenarios – isothermal and isochoric conditions, isothermal growth with the evaporation and/or extraction of the solvent and isochoric growth with continuous change in temperature. For the growth of a cubic crystal under isothermal and isochoric conditions, there are three growth stages – linear growth, nonlinear growth and plateau, and the growth rate in the stage of linear growth and the final size of the cubic crystal are dependent on the degree of supersaturation. For the growth of multi-crystals with a Gaussian distribution of crystal sizes, the change of the monomer concentration in a liquid solution is dependent on the change rates of average size and the standard deviation of the crystal sizes.