skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Carbon export and fate beneath a dynamic upwelled filament off the California coast
Abstract. To understand the vertical variations in carbon fluxes inbiologically productive waters, four autonomous carbon flux explorers(CFEs), ship-lowered CTD-interfaced particle-sensitive transmissometer andscattering sensors, and surface-drogued sediment traps were deployed in afilament of offshore flowing, recently upwelled water, during the June 2017California Current Ecosystem – Long Term Ecological Research process study.The Lagrangian CFEs operating at depths from 100–500 m yielded carbon fluxand its partitioning with size from 30 µm–1 cm at three intensivestudy locations within the filament and in waters outside the filament. Sizeanalysis codes intended to enable long-term CFE operations independent ofships are described. Different particle classes (anchovy pellets, copepodpellets, and > 1000 µm aggregates) dominated the 100–150 mfluxes during successive stages of the filament evolution as it progressedoffshore. Fluxes were very high at all locations in the filament; below150 m, flux was invariant or increased with depth at the two locationscloser to the coast. Martin curve b factors (± denotes 95 %confidence intervals) for total particulate carbon flux were +0.37 ± 0.59, +0.85 ± 0.31, −0.24 ± 0.68, and −0.45 ± 0.70 at thethree successively occupied locations within the plume, and in transitionalwaters. Interestingly, the flux profiles for all particles< 400 µm were a much closer fit to the canonical Martinprofile (b−0.86); however, most (typically > 90 %) ofthe particle flux was carried by > 1000 µm sized aggregateswhich increased with depth. Mechanisms to explain the factor of 3 fluxincrease between 150 and 500 m at the mid-plume location are investigated.  more » « less
Award ID(s):
1637632
PAR ID:
10235751
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biogeosciences
Volume:
18
Issue:
10
ISSN:
1726-4189
Page Range / eLocation ID:
3053 to 3086
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The oceanic particle flux controls, in part, ocean biogeochemical cycles and long-term carbon sequestration. The Oceanic Flux Program (OFP), the longest running time series of its kind, has continuously measured the deep particle flux in the oligotrophic Sargasso Sea southeast of Bermuda since 1978. This paper describes the deep flux climatology at the OFP site over the 1978–2022 time period. Mass flux at 500 m, 1500 m and 3200 m depths has averaged 27.2, 34.8 and 36.8 mg m−2 d-1, respectively. Carbonates comprise ∼ 60 % of the flux, with lesser amounts of organic matter, opal and lithogenics. Flux magnitude and composition vary seasonally with large interannual variability, particularly in the winter/spring flux maximum. Flux frequency distributions are strongly skewed, especially at 500 m depth where flux magnitude and compositional variability are highest. Flux seasonality, skewness and compositional heterogeneity decrease markedly with depth. A significant component of the deep flux is sourced from large particle production in the deep water column (e.g. suspended material repackaging) rather than directly from the overlying export flux. Lithogenic flux increases five-fold between 500 m and 3200 m depths, underscoring the importance of deep lateral advection and lithogenic particle removal via particle cycling processes. Multidecadal averages in deep carbon fluxes are compared with concurrent monthly data on overlying net primary production (PP) and surface export flux (EF, measured by drifting traps at 150 m depth) at the nearby Bermuda Atlantic Time Series (BATS) site. Carbon fluxes are temporally coherent throughout the water column (within the sample resolution) and lag primary production by ∼ one month. Approximately 0.6 %, 0.5 % and 0.4 % of PP reaches the 500, 1500 and 3200 m depth horizons, respectively, with the highest depth penetration occurring during the Jan-Mar period of peak primary production. Annually, 7.6 % and 6.2 % of the EF reaches the1500 and 3200 m depth horizons, respectively, with the highest transfer efficiency (9.1 % and 7.4 %, respectively at 1500 and 3200 m depths) during the post-bloom (Apr-Jun) period. The OFP flux climatology summarized here provides an important baseline for assessing future consequences of a changing climate on ocean functioning in the oligotrophic North Atlantic gyre. 
    more » « less
  2. Growing evidence suggests substantial quantities of particulate organic carbon (POC) produced in surface waters reach abyssal depths within days during episodic flux events. A 29-year record of in situ observations was used to examine episodic peaks in POC fluxes and sediment community oxygen consumption (SCOC) at Station M (NE Pacific, 4,000-m depth). From 1989 to 2017, 19% of POC flux at 3,400 m arrived during high-magnitude episodic events (≥mean + 2 σ), and 43% from 2011 to 2017. From 2011 to 2017, when high-resolution SCOC data were available, time lags between changes in satellite-estimated export flux (EF), POC flux, and SCOC on the sea floor varied between six flux events from 0 to 70 days, suggesting variable remineralization rates and/or particle sinking speeds. Half of POC flux pulse events correlated with prior increases in EF and/or subsequent SCOC increases. Peaks in EF overlying Station M frequently translated to changes in POC flux at abyssal depths. A power-law model (Martin curve) was used to estimate abyssal fluxes from EF and midwater temperature variation. While the background POC flux at 3,400-m depth was described well by the model, the episodic events were significantly underestimated by ∼80% and total flux by almost 50%. Quantifying episodic pulses of organic carbon into the deep sea is critical in modeling the depth and intensity of POC sequestration and understanding the global carbon cycle. 
    more » « less
  3. Abstract The size distribution of submicron particles is essential for understanding their biogeochemical and optical roles, but it has seldom been measured. This study utilizes ViewSizer 3000, an instrument that tracks Brownian motions of particles, to measure the particle size distributions (PSD) from 250 to 1,050 nm in the North Pacific Ocean (NP) and the North Atlantic Ocean (NA) at depths from 5 to 500 m. The concentration of particles varies over one order of magnitude at any given size bin, with greater variations up to two orders of magnitude at sizes >600 nm. In both locations, concentrations decrease with depth. Bacterioplankton are a dominant component, accounting for 65%–90% of the submicron particles in the surface waters (<100 m) and approximately 30%–40% at depths >150 m at both sites. In the NP, the volume mean diameter increased approximately 5% from the morning to noon at the surface, probably resulting from the diurnal growth of bacterioplankton. In the NA, the concentration and mean size increased by >60% and ∼10% respectively after one storm that introduced a different particle population into the study area. 
    more » « less
  4. Abstract The Connecticut River plume is influenced by energetic ambient tides in the Long Island Sound receiving waters. The objectives of this modeling study are (a) characterizing the spatial heterogeneity of turbulent buoyancy fluxes, (b) partitioning turbulent buoyancy fluxes into bottom‐generated and interfacial shear contributions, and (c) quantifying contributions to plume‐integrated mixing within the tidal plume. The plume formed during ambient flood tides under low river discharge, spring tides, and no winds is analyzed. Turbulent buoyancy fluxes (B) and depth‐integratedBthrough the plume (Bd) are characterized by pronounced spatial heterogeneity. Strong mixing (Bd∼ 10−5‐10−4 m3/s3) occurs near the mouth, in the nearfield plume turning region, over shoals, and nearshore shallow areas. Low to moderate mixing (Bd∼ 10−8‐10−6 m3/s3) occupies half the plume. Buoyancy fluxes are first partitioned based on the depth of the shear stress minimum between plume‐generated and bottom‐generated shear maxima. Four other tested partitioning methods are based on open channel flow and stratified shear flow parameterizations. Interfacial and bottom‐generated shear contribute to different areas of intense and moderate mixing. All methods indicate a significant plume mixing role for bottom‐generated mixing, but interfacial mixing is a bigger contributor. Plume‐integrated total and interfacial mixing peak at max ambient flood and the timing of peak bottom‐generated mixing varies among partitioning methods. Two‐thirds of the mixing occurs in concentrated intense mixing areas. A parameter space with the ambient tidal Froude number and plume thickness to depth ratio as axes indicates many tidally modulated plumes are moderately to dominantly influenced by bottom‐generated tidal mixing. 
    more » « less
  5. Abstract Tropical cyclones erode and remobilize coastal sediments but their impact on the deep ocean remains unclear. Hurricane‐driven transport of carbonates and associated materials from reef carbonate platforms to the deep ocean has important implications for carbon storage, deep ecosystems and ocean chemistry as carbonate platform reef‐sourced aragonite and high‐Mg calcite (HMC) may dissolve and contribute to deep water total alkalinity. Here we describe two hurricane‐driven resuspension events where deep sediment plumes from the Bermuda Pedestal (NW Atlantic) were advected to deep waters surrounding the Oceanic Flux Program (OFP) mooring site, ∼75 km southeast of Bermuda. Hurricanes Fabian (Cat. 3, 2003) and Igor (Cat. 1, 2010) generated large near‐inertial waves propagating to >750 m depths, leading to widespread sediment resuspension from the Pedestal. Following Fabian, carbonate fluxes at the OFP site increased 15‐fold, 32‐fold, and 6‐fold at 500, 1,500 and 3,200 m, respectively, with the 1,500 m flux equivalent to the total annual carbonate flux. OFP traps similarly captured a large detrital carbonate plume following Igor; here, the plume was shallower and persisted longer. Microscopy, geochemistry, and mineralogy confirmed that both plumes consisted of fine‐grained shallow‐water detrital carbonates alongside other materials accumulated on the Pedestal including phosphorus, lithogenic, authigenic, and pollutant elements. Clay‐sized particles (<4 μm) in both plumes exhibited high contents of lithogenic and authigenic elements, and Zn, Cd, and V, facilitating their transport over long distances. Grain‐size, elemental, and lipid composition indicated that plumes intercepted at different depths originated from different source areas on the Pedestal. 
    more » « less