skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Elucidating the Detectivity Limits in Shortwave Infrared Organic Photodiodes

While only few organic photodiodes have photoresponse past 1 µm, novel shortwave infrared (SWIR) polymers are emerging, and a better understanding of the limiting factors in narrow bandgap devices is critically needed to predict and advance performance. Based on state‐of‐the‐art SWIR bulk heterojunction photodiodes, this work demonstrates a model that accounts for the increasing electric‐field dependence of photocurrent in narrow bandgap materials. This physical model offers an expedient method to pinpoint the origins of efficiency losses, by decoupling the exciton dissociation efficiency and charge collection efficiency in photocurrent–voltage measurements. These results from transient photoconductivity measurements indicate that the main loss is due to poor exciton dissociation, particularly significant in photodiodes with low‐energy charge‐transfer states. Direct measurements of the noise components are analyzed to caution against using assumptions that could lead to an overestimation of detectivity. The devices show a peak detectivity of 5 × 1010Jones with a spectral range up to 1.55 µm. The photodiodes are demonstrated to quantify the ethanol–water content in a mixture within 1% accuracy, conveying the potential of organics to enable economical, scalable detectors for SWIR spectroscopy.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This work examines an additive approach that increases dielectric screening to overcome performance challenges in organic shortwave infrared (SWIR) photodiodes. The role of the high‐permittivity additive, camphoric anhydride, in the exciton dissociation and charge collection processes is revealed through measurements of transient photoconductivity and electrochemical impedance. Dielectric screening reduces the exciton binding energy to increase exciton dissociation efficiency and lowers trap‐assisted recombination loss, in the absence of any morphological changes for two polymer variants. In the best devices, the peak internal quantum efficiency at 1100 nm is increased up to 66%, and the photoresponse extends to 1400 nm. The SWIR photodiodes are integrated into a 4 × 4 pixel imager to demonstrate tissue differentiation and estimate the fat‐to‐muscle ratio through noninvasive spectroscopic analysis.

    more » « less
  2. Abstract

    Van der Waals (vdW) heterostructures of 2D atomically thin layered materials (2DLMs) provide a unique platform for constructing optoelectronic devices by staking 2D atomic sheets with unprecedented functionality and performance. A particular advantage of these vdW heterostructures is the energy band engineering of 2DLMs to achieve interlayer excitons through type‐II band alignment, enabling spectral range exceeding the cutoff wavelengths of the individual atomic sheets in the 2DLM. Herein, the high performance of GaTe/InSe vdW heterostructures device is reported. Unexpectedly, this GaTe/InSe vdWs p–n junction exhibits extraordinary detectivity in a new shortwave infrared (SWIR) spectrum, which is forbidden by the respective bandgap limits for the constituent GaTe (bandgap of ≈1.70 eV in both the bulk and monolayer) and InSe (bandgap of ≈1.20–1.80 eV depending on thickness reduction from bulk to monolayer). Specifically, the uncooled SWIR detectivity is up to ≈1014Jones at 1064 nm and ≈1012Jones at 1550 nm, respectively. This result indicates that the 2DLM vdW heterostructures with type‐II band alignment produce an interlayer exciton transition, and this advantage can offer a viable strategy for devising high‐performance optoelectronics in SWIR or even longer wavelengths beyond the individual limitations of the bandgaps and heteroepitaxy of the constituent atomic layers.

    more » « less
  3. Heterojunction nanohybrids based on low-dimension semiconductors, including colloidal quantum dots (QDs) and 2D atomic materials (graphene, transition metal chalcogenides, etc) provide a fascinating platform to design of new photonic and optoelectronic devices that take advantages of the enhanced light-solid interaction attributed to their strong quantum confinement and superior charge mobility for uncooled photodetectors with a high gain up to 1010. In these heterojunction nanohybrids, the van der Waals (vdW) interface plays a critical role in controlling the optoelectronic process including exciton dissociation by the interface built-in field that drives the follow-up charge injection and transport to graphene. In this paper, we present our recent progress in development of such heterostructures nanohybrids for uncooled infrared detectors including PbS and FeS2 QDs/graphene and 2D vdW heterostructures MoTe2/Graphene/SnS2 and GaTe/InSe. We have found that nonstoichiometric Fe1–xS2 QDs (x = 0.01–0.107) with strong localized surface plasmonic resonance (LSPR) can have much enhanced absorption in broadband from ultraviolet to short-wave infrared (SWIR, 1–3 μm). Consequently, the LSPR Fe1–xS2 QDs/graphene heterostructure photodetectors exhibit extraordinary photoresponsivity in exceeding 4.32 ×106 A/W and figure-of-merit detectivity D* < 7.50 ×1012 Jones in the broadband of UV–Vis–SWIR at room temperature. The 2D vdW heterostructures allows novel designs of interface band alignments with uncooled NIR-SWIR D* up to 1012 Jones. These results illustrate that the heterostructure nanohybrids provide a promising pathway for low-cost, printable and flexible infrared detectors and imaging systems. 
    more » « less
  4. Abstract

    All‐inorganic perovskite quantum dots (IPQDs) are a promising material for use in various optoelectronic devices due to their excellent optoelectronic properties and high environmental stability. Here, a high‐performance phototransistor based on a layered heterojunction composed of CsPbI3QDs and a narrow‐bandgap conjugated polymer DPP‐DTT is reported, which shows a high responsivity of 110 A W−1, a specific detectivity of 2.9 × 1013Jones and a light to dark current ratio up to 6 × 103. The heterojunction phototransistor exhibits unipolar p‐type and gate bias modulated behaviors. In addition, the device exhibits a broad spectral detection range from ultraviolet to near infrared. The high sensitivity of the device is attributed to the layered heterojunction and the gate bias modulation property. The work overcomes the existing limitations in sensitivity of IPQD photodetectors due to the poor charge transport between QDs. The convenient solution‐processed fabrication and excellent device performance especially suggest the IPQD/narrow‐bandgap conjugate polymer heterojunction as a promising structure for potential applications of ultrasensitive broadband photodetectors compatible with a wide variety of substrates.

    more » « less
  5. Abstract

    To achieve high detectivity in infrared detectors, it is critical to reduce the device noise. However, for non-crystalline semiconductors, an essential framework is missing to understand and predict the effects of disorder on the dark current. This report presents experimental and modeling studies on the noise current in exemplar organic bulk heterojunction photodiodes, with 10 donor–acceptor combinations spanning wavelength between 800 and 1600 nm. A significant reduction of the noise and higher detectivity were found in devices using non-fullerene acceptors (NFAs) in comparison to those using fullerene derivatives. The low noise in NFA blends was attributed to a sharp drop off in the distribution of bandtail states, as revealed by variable-temperature density-of-states measurements. Taking disorder into account, we developed a general physical model to explain the dependence of thermal noise on the effective bandgap and bandtail spread. The model provides theoretical targets for the maximum detectivity that can be obtained at different detection wavelengths in inherently disordered infrared photodiodes.

    more » « less