skip to main content

Title: Azide‐Terminated RAFT Polymers for Biological Applications

Reversible addition‐fragmentation chain‐transfer (RAFT) polymerization is a commonly used polymerization methodology to generate synthetic polymers. The products of RAFT polymerization, i.e., RAFT polymers, have been widely employed in several biologically relevant areas, including drug delivery, biomedical imaging, and tissue engineering. In this article, we summarize a synthetic methodology to display an azide group at the chain end of a RAFT polymer, thus presenting a reactive site on the polymer terminus. This platform enables a click reaction between azide‐terminated polymers and alkyne‐containing molecules, providing a broadly applicable scaffold for chemical and bioconjugation reactions on RAFT polymers. We also highlight applications of these azide‐terminated RAFT polymers in fluorophore labeling and for promoting organelle targeting capability. © 2020 Wiley Periodicals LLC.

Basic Protocol 1: Synthesis of the azide derivatives of chain transfer agent and radical initiator

Basic Protocol 2: Installation of an azide group on the α‐end of RAFT polymers

Alternate Protocol: Installation of an azide group on the ω‐end of RAFT polymers

Basic Protocol 3: Click reaction between azide‐terminated RAFT polymers and alkyne derivatives

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Current Protocols in Chemical Biology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    1H NMR and SEC analyses are used to investigate the overall efficiency of Copper Catalyzed Azide Alkyne Cycloaddition (CuAAC) “click” coupling reactions between alkyne‐ and azide‐terminated polymers using polystyrene as a model. Quantitative convolution modeling of the entire molecular weight distribution is applied to characterize the outcomes of the functional polymer synthesis reactions (i.e., by atom transfer radical polymerization), as well as the CuAAC coupling reaction. Incomplete functionality of the azide‐terminated polystyrene (∼92%) proves to be the largest factor compromising the efficacy of the CuAAC coupling reaction and is attributed primarily to the loss of terminal bromide functionality during its synthesis. The efficiency of the SN2 reaction converting bromide to azide was found to be about 99%. After taking into account the influence of non‐functional polymer, we find that, under the reaction conditions used, the efficiency of the CuAAC coupling reaction determined from both techniques is about 94%. These inefficiencies compromise the fidelity and potential utility of CuAAC coupling reactions for the synthesis of hierarchically structured polymers. While CuAAC efficiency is expected to depend on the specific reaction conditions used, the framework described for determining reaction efficiency does provide a means for ultimately optimizing the reaction conditions for CuAAC coupling reactions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018,56, 75–84

    more » « less

    Hypervalent iodine(III) compounds with tetrazole ligands C6H5I(N4CR)2(R  CH3, C6H5, 4‐CH3C6H4) reacted, in the presence of elemental iodine, with the double bonds in cis‐1,4‐polyisoprene (polyIP) to afford iodo‐tetrazolylated polymers. The alkyl‐iodide groups in the products of the polyIP functionalization were utilized as macro chain‐transfer agents for the iodine‐transfer polymerization of methyl methacrylate, which yielded brush polymers with well‐defined poly(methyl methacrylate) side chains. In addition, the iodo‐tetrazolylated polymers were reacted with NaN3in DMF at room temperature, and it was noticed that, in addition to nucleophilic substitution, elimination reactions took place. However, the presence of azide groups was taken advantage of and successful click chemistry‐type of grafting‐onto reactions were carried out with alkyne‐capped poly(ethylene oxide) in the presence of CuBr andN,N,N′,N″,N″‐pentamethyldiethylenetriamine. The thermal decomposition of both the iodo‐tetrazolylated and the azido‐tetrazolylated polymers was exothermic, especially for the latter materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci.2020,58, 172–180

    more » « less

    This article reports a chain‐growth coupling polymerization of AB difunctional monomer via copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction for synthesis of star polymers. Unlike our previously reported CuAAC polymerization of ABn(n ≥ 2) monomers that spontaneously demonstrated a chain‐growth mechanism in synthesis of hyperbranched polymer, the homopolymerization of AB monomer showed a common but less desired step‐growth mechanism as the triazole groups aligned in a linear chain could not effectively confine the Cu catalyst in the polymer species. In contrast, the use of polytriazole‐based core molecules that contained multiple azido groups successfully switched the polymerization of AB monomers into chain‐growth mechanism and produced 3‐arm star polymers and multi‐arm hyperstar polymers with linear increase of polymer molecular weight with conversion and narrow molecular weight distribution, for example,Mw/Mn ~ 1.05. When acid‐degradable hyperbranched polymeric core was used, the obtained hyperstar polymers could be easily degraded under acidic environment, producing linear degraded arms with defined polydispersity. © 2019 Wiley Periodicals, Inc. J. Polym. Sci.2020,58, 84–90

    more » « less
  4. Abstract

    Organophosphate nerve agents rapidly inhibit cholinesterases thereby destroying the ability to sustain life. Strong nucleophiles, such as oximes, have been used as therapeutic reactivators of cholinesterase‐organophosphate complexes, but suffer from short half‐lives and limited efficacy across the broad spectrum of organophosphate nerve agents. Cholinesterases have been used as long‐lived therapeutic bioscavengers for unreacted organophosphates with limited success because they react with organophosphate nerve agents with one‐to‐one stoichiometries. The chemical power of nucleophilic reactivators is coupled to long‐lived bioscavengers by designing and synthesizing cholinesterase‐polymer‐oxime conjugates using atom transfer radical polymerization and azide‐alkyne “click” chemistry. Detailed kinetic studies show that butyrylcholinesterase‐polymer‐oxime activity is dependent on the electrostatic properties of the polymers and the amount of oxime within the conjugate. The covalent coupling of oxime‐containing polymers to the surface of butyrylcholinesterase slows the rate of inactivation of paraoxon, a model nerve agent. Furthermore, when the enzyme is covalently inhibited by paraoxon, the covalently attached oxime induced inter‐ and intramolecular reactivation. Intramolecular reactivation will open the door to the generation of a new class of nerve agent scavengers that couple the speed and selectivity of biology to the ruggedness and simplicity of synthetic chemicals.

    more » « less

    Copper‐catalyzed azide‐alkyne cycloaddition polymerization (CuAACP) of AB2monomers demonstrated a chain‐growth mechanism without any external ligand because of the complexation ofin situformed triazole groups with Cu catalysts. In this study, we explored the use of various ligands that affected the polymerization kinetics to tune the polymers’ molecular weights and the degree of branching (DB). Eight ligands were studied, including polyethylene glycol monomethyl ether (PEG350,Mn= 350), tris(benzyltriazolylmethyl)amine (TBTA), 2,6‐bis(1‐undecyl‐1H‐benzo[d]imidazol‐2‐yl)pyridine (Py(DBim)2), 2,2′‐bipyridyl (bpy), 4,4′‐di‐n‐nonyl‐2,2′‐bipyridine (dNbpy),N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA),N,N,N′,N″,N″‐penta(n‐butyl)diethylenetriamine (PBuDETA), andN,N,N′,N″,N″‐pentabenzyldiethylenetriamine (PBnDETA). All ligands except PEG350exhibited stronger coordination with Cu(I) than the polytriazole polymer, which freed the Cu catalyst from polymers and resulted in dominant step‐growth polymerization with simultaneous chain‐growth feature. Meanwhile, the use of PEG350ligand retained the confined Cu in the polymer, demonstrating a chain‐growth mechanism, but lower polymer molecular weights as compared with the no‐external‐ligand polymerization. Results indicated that aliphatic substituent groups on ligands had little effect on the molecular weights and DB of the polymers, but rigid aromatic substituent groups decreased both values. By varying the ligand species and amounts, hyperbranched polymers with DB value ranging from 0.53 ([TBTA]0/[Cu]0= 5) to 0.98 ([PMDETA]0/[Cu]0= 2) have been achieved. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018,56, 2238–2244

    more » « less