Abstract Toxic organic solvents and electrolytes, traditionally indispensable for electro‐organic synthesis, are now being reconsidered. In developing more sustainable electro‐organic synthesis, we've harnessed the aqueous micelles as solvents and electrolyte‐like structures when deformed under an electric field. The technology is showcased in synthetically highly valued hydrodefluorination reactions of difluorinated indoles. This mild electrosynthetic method produces monofluorinated unprotected indole scaffolds. Our approach minimizes waste and enhances atom economy, reducing reliance on expensive and hazardous solvents and electrolytes. The surfactant's potential for recycling was verified for two cycles. Cyclic voltammetry analysis has corroborated that PS‐750‐M micelles in water establish a more efficient platform for hydrodefluorination. Our technology simplifies the production of monofluorinated indoles, which are crucial for many drug‐like molecules. 
                        more » 
                        « less   
                    
                            
                            Regioselective Formation of Substituted Indoles: Formal Synthesis of Lysergic Acid
                        
                    
    
            Abstract A Diels–Alder reaction‐based strategy for the synthesis of indoles and related heterocycles is reported. An intramolecular cycloaddition of alkyne‐tethered 3‐aminopyrones gives 4‐substituted indolines in good yield and with complete regioselectivity. Additional substitution is readily tolerated in the transformation, allowing synthesis of complex and non‐canonical substitution patterns. Oxidative conditions give the corresponding indoles. The strategy also allows the synthesis of carbazoles. The method was showcased in a formal synthesis of lysergic acid. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1956401
- PAR ID:
- 10236171
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 26
- Issue:
- 70
- ISSN:
- 0947-6539
- Format(s):
- Medium: X Size: p. 16655-16658
- Size(s):
- p. 16655-16658
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Methods that can simultaneously install multiple different functional groups to heteroarenes via C−H functionalizations are valuable for complex molecule synthesis, which, however, remain challenging to realize. Here we report the development of vicinal di‐carbo‐functionalization of indoles in a site‐ and regioselective manner, enabled by the palladium/norbornene (Pd/NBE) cooperative catalysis. The reaction is initiated by the Pd(II)‐mediated C3‐metalation and specifically promoted by the C1‐substituted NBEs. The mild, scalable, and robust reaction conditions allow for a good substrate scope and excellent functional group tolerance. The resulting C2‐arylated C3‐alkenylated indoles can be converted to diverse synthetically useful scaffolds. The combined experimental and computational mechanistic study reveals the unique role of the C1‐substituted NBE in accelerating the turnover‐limiting oxidative addition step.more » « less
- 
            Abstract Indole is one of the most important heterocycles in organic synthesis, natural products, and drug discovery. Recently, tremendous advances in the selective functionalization of indoles have been reported. Although the most important advances have been powered by transition metal catalysis, exceedingly useful methods in the absence of transition metals have also been reported. In this review, we provide an overview of functionalization reactions of indoles that have been published in the last years with a focus on the most recent advances, aims, and future trends. The review is organized by the positional selectivity and type of methods used for functionalization. In particular, we discuss major advances in transition‐metal‐catalyzed C−H functionalization at the classical C2/C3 positions, transition‐metal‐catalyzed C−H functionalization at the remote C4/C7 positions, transition‐metal‐catalyzed cross‐coupling, and transition‐metal‐free functionalization. magnified imagemore » « less
- 
            Baran, P. (Ed.)Described is a concise total synthesis of (−)-ambiguine P, a cycloheptane-containing member of the hapalindole alkaloids. The challenging pentacyclic framework of the natural product was assembled rapidly via a [4 + 3] cycloaddition reaction-inspired strategy, and the tertiary hydroxy group was introduced by an NBS- mediated bromination−nucleophilic substitution sequence.more » « less
- 
            null (Ed.)A nontrigonal phosphorus triamide ( 1 , P{N[ o -NMe-C 6 H 4 ] 2 }) is shown to catalyze C–H borylation of electron-rich heteroarenes with pinacolborane (HBpin) in the presence of a mild chloroalkane reagent. C–H borylation proceeds for a range of electron-rich heterocycles including pyrroles, indoles, and thiophenes of varied substitution. Mechanistic studies implicate an initial P–N cooperative activation of HBpin by 1 to give P -hydrido diazaphospholene 2 , which is diverted by Atherton–Todd oxidation with chloroalkane to generate P -chloro diazaphospholene 3 . DFT calculations suggest subsequent oxidation of pinacolborane by 3 generates chloropinacolborane (ClBpin) as a transient electrophilic borylating species, consistent with observed substituent effects and regiochemical outcomes. These results illustrate the targeted diversion of established reaction pathways in organophosphorus catalysis to enable a new mode of main group-catalyzed C–H borylation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
