Abstract Decarbonylation along with P‐atom transfer from the phosphaethynolate anion, PCO−, to the NbIVcomplex [(PNP)NbCl2(NtBuAr)] (1) (PNP=N[2‐PiPr2‐4‐methylphenyl]2−; Ar=3,5‐Me2C6H3) results in its coupling with one of the phosphine arms of the pincer ligand to produce a phosphanylidene phosphorane complex [(PNPP)NbCl(NtBuAr)] (2). Reduction of2with CoCp*2cleaves the P−P bond to form the first neutral and terminal phosphido complex of a group 5 transition metal, namely, [(PNP)Nb≡P(NtBuAr)] (3). Theoretical studies have been used to understand both the coupling of the P‐atom and the reductive cleavage of the P−P bond. Reaction of3with a two‐electron oxidant such as ethylene sulfide results in a diamagnetic sulfido complex having a P−P coupled ligand, namely [(PNPP)Nb=S(NtBuAr)] (4).
more »
« less
Bimetallic, Silylene‐Mediated Multielectron Reductions of Carbon Dioxide and Ethylene
Abstract A metal/ligand cooperative approach to the reduction of small molecules by metal silylene complexes (R2Si=M) is demonstrated, whereby silicon activates the incoming substrate and mediates net two‐electron transformations by one‐electron redox processes at two metal centers. An appropriately tuned cationic pincer cobalt(I) complex, featuring a central silylene donor, reacts with CO2to afford a bimetallic siloxane, featuring two CoIIcenters, with liberation of CO; reaction of the silylene complex with ethylene yields a similar bimetallic product with an ethylene bridge. Experimental and computational studies suggest a plausible mechanism proceeding by [2+2] cycloaddition to the silylene complex, which is quite sensitive to the steric environment. The CoII/CoIIproducts are reactive to oxidation and reduction. Taken together, these findings demonstrate a strategy for metal/ligand cooperative small‐molecule activation that is well‐suited to 3dmetals.
more »
« less
- PAR ID:
- 10236177
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 60
- Issue:
- 3
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 1615-1619
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Reduction of the cobalt(II) chloride complex, Ph2B(tBuIm)2Co(THF)Cl (1) in the presence oftBuN≡C affords the diamagnetic, square planar cobalt(I) complex Ph2B(tBuIm)2Co(C≡NtBu)2(2). This is a rare example of a 16‐electron cobalt(I) complex that is structurally related to square planar noble metal complexes. Accordingly, the electronic structure of2, as calculated by DFT, reveals that the HOMO is largely dz2in character. Complex2is readily oxidized to its cobalt(II) congener [Ph2B(tBuIm)2Co(C=NtBu)2]BPh4(3‐BPh4), whose EPR spectral parameters are characteristic of low‐spin d7with an unpaired electron in an orbital of dz2parentage. This is also consistent with the results of DFT calculations. Despite its 16‐electron configuration and the dz2parentage of the HOMO, the only tractable reactions of2involve one electron oxidation to afford3.more » « less
-
Abstract Although metal–organic frameworks are coordination‐driven assemblies, the structural prediction and design using metal‐ligand interactions can be unreliable due to other competing interactions. Leveraging non‐coordination interactions to develop porous assemblies could enable new materials and applications. Here, we use a multi‐module MOF system to explore important and pervasive impact of ligand‐ligand interactions on metal‐ligand as well as ligand‐ligand co‐assembly process. It is found that ligand‐ligand interactions play critical roles on the scope or breakdown of isoreticular chemistry. With cooperative di‐ and tri‐topic ligands, a family of Ni‐MOFs has been synthesized in various structure types including partitioned MIL‐88‐acs (pacs), interruptedpacs(i‐pacs), and UMCM‐1‐muo. A new type of isoreticular chemistry on the muo platform is established between two drastically different chemical systems. The gas sorption and electrocatalytic studies were performed that reveal excellent performance such as high C2H2/CO2selectivity of 21.8 and high C2H2uptake capacity of 114.5 cm3/g at 298 K and 1 bar.more » « less
-
Abstract The reduction of dioxygen to produce selectively H2O2or H2O is crucial in various fields. While platinum‐based materials excel in 4H+/4e−oxygen reduction reaction (ORR) catalysis, cost and resource limitations drive the search for cost‐effective and abundant transition metal catalysts. It is thus of great importance to understand how the selectivity and efficiency of 3d‐metal ORR catalysts can be tuned. In this context, we report on a Co complex supported by a bisthiolate N2S2‐donor ligand acting as a homogeneous ORR catalyst in acetonitrile solutions both in the presence of a one‐electron reducing agent (selectivity for H2O of 93 % and TOFi=3 000 h−1) and under electrochemically‐assisted conditions (0.81 V <η<1.10 V, selectivity for H2O between 85 % and 95 %). Interestingly, such a predominant 4H+/4e−pathway for Co‐based ORR catalysts is rare, highlighting the key role of the thiolate donor ligand. Besides, the selectivity of this Co catalyst under chemical ORR conditions is inverse with respect to the Mn and Fe catalysts supported by the same ligand, which evidences the impact of the nature of the metal ion on the ORR selectivity.more » « less
-
Abstract Relative to other cyclic poly‐phosphorus species (that is,cyclo‐Pn), the planarcyclo‐P4group is unique in its requirement of two additional electrons to achieve aromaticity. These electrons are supplied from one or more metal centers. However, the degree of charge transfer is dependent on the nature of the metal fragment. Unique examples of dianionic mononuclear η4‐P4complexes are presented that can be viewed as the simple coordination of the [cyclo‐P4]2−dianion to a neutral metal fragment. Treatment of the neutral, molybdenumcyclo‐P4complexes Mo(η4‐P4)I2(CO)(CNArDipp2)2and Mo(η4‐P4)(CO)2(CNArDipp2)2with KC8produces the dianionic, three‐legged piano stool complexes, [Mo(η4‐P4)(CO)(CNArDipp2)2]2−and [Mo(η4‐P4)(CO)2(CNArDipp2)]2−, respectively. Structural, spectroscopic, and computational studies reveal a similarity to the classic η6‐benzene complex (η6‐C6H6)Mo(CO)3regarding the metal‐center valence state and electronic population of the planar‐cyclic ligand π system.more » « less
An official website of the United States government
