skip to main content


Title: Accurate Determination of the Quantity and Spatial Distribution of Counterions around a Spherical Macroion
Abstract

The accurate distribution of countercations (Rb+and Sr2+) around a rigid, spherical, 2.9‐nm size polyoxometalate cluster, {Mo132}42−, is determined by anomalous small‐angle X‐ray scattering. Both Rb+and Sr2+ions lead to shorter diffuse lengths for {Mo132} than prediction. Most Rb+ions are closely associated with {Mo132} by staying near the skeleton of {Mo132} or in the Stern layer, whereas more Sr2+ions loosely associate with {Mo132} in the diffuse layer. The stronger affinity of Rb+ions towards {Mo132} than that of Sr2+ions explains the anomalous lower critical coagulation concentration of {Mo132} with Rb+compared to Sr2+. The anomalous behavior of {Mo132} can be attributed to majority of negative charges being located at the inner surface of its cavity. The longer anion–cation distance weakens the Coulomb interaction, making the enthalpy change owing to the breakage of hydration layers of cations more important in regulating the counterion–{Mo132} interaction.

 
more » « less
Award ID(s):
1904397
NSF-PAR ID:
10236829
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
133
Issue:
11
ISSN:
0044-8249
Format(s):
Medium: X Size: p. 5897-5901
Size(s):
["p. 5897-5901"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The accurate distribution of countercations (Rb+and Sr2+) around a rigid, spherical, 2.9‐nm size polyoxometalate cluster, {Mo132}42−, is determined by anomalous small‐angle X‐ray scattering. Both Rb+and Sr2+ions lead to shorter diffuse lengths for {Mo132} than prediction. Most Rb+ions are closely associated with {Mo132} by staying near the skeleton of {Mo132} or in the Stern layer, whereas more Sr2+ions loosely associate with {Mo132} in the diffuse layer. The stronger affinity of Rb+ions towards {Mo132} than that of Sr2+ions explains the anomalous lower critical coagulation concentration of {Mo132} with Rb+compared to Sr2+. The anomalous behavior of {Mo132} can be attributed to majority of negative charges being located at the inner surface of its cavity. The longer anion–cation distance weakens the Coulomb interaction, making the enthalpy change owing to the breakage of hydration layers of cations more important in regulating the counterion–{Mo132} interaction.

     
    more » « less
  2. Abstract

    Chemical compositions of sediment pore waters are presented from 13 piston and gravity cores that were collected on ∼24 Ma crust of the Cocos Plate seaward of the Middle America Trench and near the onset of crustal faulting from subduction. Cores were collected mainly within a 1.75 km2area overlying a buried basement topographic high that supports an elevated heat flux, consistent with seawater transport within the upper volcanic crust. Systematic variations in pore water chemical profiles indicate upward seepage speeds (up to 1.7 cm yr−1providing a net flux of 0.1 L s−1), constrain the chemical composition of the formation water within the underlying upper basaltic basement, and elucidate diagenetic reactions in the sediment. Relative to seawater, formation water has an elevated temperature (70–80°C) and concentrations or values of Ca, chlorinity, Sr, Ba, Li, Fe, Mn, Si, Cs, D/H, and Mo, and lower concentrations or values of Mg, Na, sulfate, alkalinity, TCO2, K, B, F, phosphate,87Sr/86Sr, δ13C, δ18O, U, and Rb. Although this site is located only 30 km from the trench axis, there is no chemical evidence for subduction‐related hydrologic influences. Instead, the data are explained by a combination of seawater‐basalt reactions within the upper basement and diffusive exchange with overlying sediment, as part of a shallow, ridge‐flank hydrothermal system. It is unclear why this site has an elevated heat flux relative to neighboring crust, but this may result from variations in crustal properties or modification related to flexural faulting outboard of the trench.

     
    more » « less
  3. Abstract

    The repeating fast radio burst FRB 20190520B is an anomaly of the FRB population thanks to its high dispersion measure (DM = 1205 pc cm−3) despite its low redshift ofzfrb= 0.241. This excess has been attributed to a large host contribution of DMhost≈ 900 pc cm−3, far larger than any other known FRB. In this paper, we describe spectroscopic observations of the FRB 20190520B field obtained as part of the FLIMFLAM survey, which yielded 701 galaxy redshifts in the field. We find multiple foreground galaxy groups and clusters, for which we then estimated halo masses by comparing their richness with numerical simulations. We discover two separateMhalo> 1014Mgalaxy clusters atz= 0.1867 and 0.2170 that are directly intersected by the FRB sight line within their characteristic halo radiusr200. Subtracting off their estimated DM contributions, as well that of the diffuse intergalactic medium, we estimate a host contribution ofDMhost=430220+140or280170+140pccm3(observed frame), depending on whether we assume that the halo gas extends tor200or 2 ×r200. This significantly smaller DMhost—no longer the largest known value—is now consistent with Hαemission measures of the host galaxy without invoking unusually high gas temperatures. Combined with the observed FRB scattering timescale, we estimate the turbulent fluctuation and geometric amplification factor of the scattering layer to beF˜G4.511(pc2km)1/3, suggesting that most of the gas is close to the FRB host. This result illustrates the importance of incorporating foreground data for FRB analyses both for understanding the nature of FRBs and to realize their potential as a cosmological probe.

     
    more » « less
  4. Abstract

    We report the Earth's rate of radiogenic heat production and (anti)neutrino luminosity from geologically relevant short‐lived radionuclides (SLR) and long‐lived radionuclides (LLR) using decay constants from the geological community, updated nuclear physics parameters, and calculations of theβspectra. We track the time evolution of the radiogenic power and luminosity of the Earth over the last 4.57 billion years, assuming an absolute abundance for the refractory elements in the silicate Earth and key volatile/refractory element ratios (e.g., Fe/Al, K/U, and Rb/Sr) to set the abundance levels for the moderately volatile elements. The relevant decays for the present‐day heat production in the Earth (19.9 ± 3.0 TW) are from40K,87Rb,147Sm,232Th,235U, and238U. Given element concentrations in kg‐element/kg‐rock and densityρin kg/m3, a simplified equation to calculate the present‐day heat production in a rock isurn:x-wiley:ggge:media:ggge22244:ggge22244-math-0001

    The radiogenic heating rate of Earth‐like material at solar system formation was some 103to 104times greater than present‐day values, largely due to decay of26Al in the silicate fraction, which was the dominant radiogenic heat source for the first10 Ma. Assuming instantaneous Earth formation, the upper bound on radiogenic energy supplied by the most powerful short‐lived radionuclide26Al (t1/2= 0.7 Ma) is 5.5×1031 J, which is comparable (within a factor of a few) to the planet's gravitational binding energy.

     
    more » « less
  5. Abstract

    In order to constrain the size of the optical continuum emission region in the dwarf Seyfert 1 galaxy NGC 4395 through reverberation mapping, we carried out high-cadence photometric monitoring in thegrizfilter bands on two consecutive nights in 2022 April using the four-channel MuSCAT3 camera on the Faulkes Telescope North at Haleakalā Observatory. Correlated variability across thegrizbands is clearly detected, and ther-,i-, andz-band light curves show lags of7.721.09+1.01,14.161.25+1.22, and20.782.09+1.99minutes with respect to thegband when measured using the full-duration light curves. When lags are measured for each night separately, the Night 2 data exhibit lower cross-correlation amplitudes and shorter lags than the Night 1 light curves. Using the full-duration lags, we find that the lag–wavelength relationship is consistent with theτλ4/3dependence found for more luminous active galactic nuclei. Combining our results with continuum lags measured for other objects, the lag betweengandzband scales with optical continuum luminosity asτgzL0.56±0.05, similar to the scaling of broad-line region size with luminosity, reinforcing recent evidence that diffuse continuum emission from the broad-line region may contribute substantially to optical continuum variability and reverberation lags.

     
    more » « less