Abstract Background Advances in microbiome science are being driven in large part due to our ability to study and infer microbial ecology from genomes reconstructed from mixed microbial communities using metagenomics and single-cell genomics. Such omics-based techniques allow us to read genomic blueprints of microorganisms, decipher their functional capacities and activities, and reconstruct their roles in biogeochemical processes. Currently available tools for analyses of genomic data can annotate and depict metabolic functions to some extent; however, no standardized approaches are currently available for the comprehensive characterization of metabolic predictions, metabolite exchanges, microbial interactions, and microbial contributions to biogeochemical cycling. Results We present METABOLIC (METabolic And BiogeOchemistry anaLyses In miCrobes), a scalable software to advance microbial ecology and biogeochemistry studies using genomes at the resolution of individual organisms and/or microbial communities. The genome-scale workflow includes annotation of microbial genomes, motif validation of biochemically validated conserved protein residues, metabolic pathway analyses, and calculation of contributions to individual biogeochemical transformations and cycles. The community-scale workflow supplements genome-scale analyses with determination of genome abundance in the microbiome, potential microbial metabolic handoffs and metabolite exchange, reconstruction of functional networks, and determination of microbial contributions to biogeochemical cycles. METABOLIC can take input genomes from isolates, metagenome-assembled genomes, or single-cell genomes. Results are presented in the form of tables for metabolism and a variety of visualizations including biogeochemical cycling potential, representation of sequential metabolic transformations, community-scale microbial functional networks using a newly defined metric “MW-score” (metabolic weight score), and metabolic Sankey diagrams. METABOLIC takes ~ 3 h with 40 CPU threads to process ~ 100 genomes and corresponding metagenomic reads within which the most compute-demanding part of hmmsearch takes ~ 45 min, while it takes ~ 5 h to complete hmmsearch for ~ 3600 genomes. Tests of accuracy, robustness, and consistency suggest METABOLIC provides better performance compared to other software and online servers. To highlight the utility and versatility of METABOLIC, we demonstrate its capabilities on diverse metagenomic datasets from the marine subsurface, terrestrial subsurface, meadow soil, deep sea, freshwater lakes, wastewater, and the human gut. Conclusion METABOLIC enables the consistent and reproducible study of microbial community ecology and biogeochemistry using a foundation of genome-informed microbial metabolism, and will advance the integration of uncultivated organisms into metabolic and biogeochemical models. METABOLIC is written in Perl and R and is freely available under GPLv3 at https://github.com/AnantharamanLab/METABOLIC .
more »
« less
Evolutionary stasis of a deep subsurface microbial lineage
Abstract Sulfate-reducing bacteria Candidatus Desulforudis audaxviator (CDA) were originally discovered in deep fracture fluids accessed via South African gold mines and have since been found in geographically widespread deep subsurface locations. In order to constrain models for subsurface microbial evolution, we compared CDA genomes from Africa, North America and Eurasia using single cell genomics. Unexpectedly, 126 partial single amplified genomes from the three continents, a complete genome from of an isolate from Eurasia, and metagenome-assembled genomes from Africa and Eurasia shared >99.2% average nucleotide identity, low frequency of SNP’s, and near-perfectly conserved prophages and CRISPRs. Our analyses reject sample cross-contamination, recent natural dispersal, and unusually strong purifying selection as likely explanations for these unexpected results. We therefore conclude that the analyzed CDA populations underwent only minimal evolution since their physical separation, potentially as far back as the breakup of Pangea between 165 and 55 Ma ago. High-fidelity DNA replication and repair mechanisms are the most plausible explanation for the highly conserved genome of CDA. CDA presents a stark contrast to the current model organisms in microbial evolutionary studies, which often develop adaptive traits over far shorter periods of time.
more »
« less
- Award ID(s):
- 1826734
- PAR ID:
- 10237345
- Date Published:
- Journal Name:
- The ISME Journal
- ISSN:
- 1751-7362
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neoclytus acuminatus acuminatus, the red-headed ash borer, is a wood-boring longhorn beetle (Cerambycidae: Cerambycinae) native to North America and introduced in Eurasia and South America. Its larvae develop in dying or recently dead hardwood trees, including ecologically and economically significant species of ash, hickory, and oak. We sequenced, assembled, and annotated the genome of a female N. acuminatus and compared it to the publicly available genomes of other cerambycid species. The 508 Mb N. acuminatus genome assembly spanned 20 contigs (19 nuclear + 1 mitochondrial), with an N50 of 52.59 Mb and largest contig of 61.20 Mb. A moderately high fraction of the genome (62.63%) comprised repetitive sequences, with nearly all (99.4%) expected single-copy orthologous genes (BUSCOs) present and fully assembled. We identified 2 contigs as fragments of the N. acuminatus sex chromosome. Genome annotation identified 12,899 genes, including 109 putative horizontally transferred loci. Synteny analysis identified well-conserved blocks of collinearity between the N. acuminatus genome and other Cerambycidae. The genome contains a similar number of genes encoding putative plant cell wall degrading enzymes as other Cerambycidae. The N. acuminatus genome provides new insights into genome evolution in the family Cerambycidae, known for its rich diversity of xylophagous species, and provides a new viewpoint from which to study the evolution and genomic basis of traits such as wood-feeding and olfaction in beetles and other insects.more » « less
-
Abstract Leafhoppers comprise over 20,000 plant‐sap feeding species, many of which are important agricultural pests. Most species rely on two ancestral bacterial symbionts,SulciaandNasuia, for essential nutrition lacking in their phloem and xylem plant sap diets. To understand how pest leafhopper genomes evolve and are shaped by microbial symbioses, we completed a chromosomal‐level assembly of the aster leafhopper's genome (ALF;Macrosteles quadrilineatus). We compared ALF's genome to three other pest leafhoppers,Nephotettix cincticeps,Homalodisca vitripennis, andEmpoasca onukii, which have distinct ecologies and symbiotic relationships. Despite diverging ~155 million years ago, leafhoppers have high levels of chromosomal synteny and gene family conservation. Conserved genes include those involved in plant chemical detoxification, resistance to various insecticides, and defence against environmental stress. Positive selection acting upon these genes further points to ongoing adaptive evolution in response to agricultural environments. In relation to leafhoppers' general dependence on symbionts, species that retain the ancestral symbiont,Sulcia, displayed gene enrichment of metabolic processes in their genomes. Leafhoppers with bothSulciaand its ancient partner,Nasuia, showed genomic enrichment in genes related to microbial population regulation and immune responses. Finally, horizontally transferred genes (HTGs) associated with symbiont support ofSulciaandNasuiaare only observed in leafhoppers that maintain symbionts. In contrast, HTGs involved in non‐symbiotic functions are conserved across all species. The high‐quality ALF genome provides deep insights into how host ecology and symbioses shape genome evolution and a wealth of genetic resources for pest control targets.more » « less
-
We present the whole genome sequences of 56 wild Erythroxylum species from Africa, China, and the American tropics. Deep Illumina sequencing was performed on a single leaf of each voucher. We de novo assembled sequence reads and then identified and used conserved regions across all preassemblies join contigs in a finishing step. The raw and assembled data is publicly available via Genbank.more » « less
-
Jansson, Janet K. (Ed.)ABSTRACT Soil ecosystems harbor diverse microorganisms and yet remain only partially characterized as neither single-cell sequencing nor whole-community sequencing offers a complete picture of these complex communities. Thus, the genetic and metabolic potential of this “uncultivated majority” remains underexplored. To address these challenges, we applied a pooled-cell-sorting-based mini-metagenomics approach and compared the results to bulk metagenomics. Informatic binning of these data produced 200 mini-metagenome assembled genomes (sorted-MAGs) and 29 bulk metagenome assembled genomes (MAGs). The sorted and bulk MAGs increased the known phylogenetic diversity of soil taxa by 7.2% with respect to the Joint Genome Institute IMG/M database and showed clade-specific sequence recruitment patterns across diverse terrestrial soil metagenomes. Additionally, sorted-MAGs expanded the rare biosphere not captured through MAGs from bulk sequences, exemplified through phylogenetic and functional analyses of members of the phylum Bacteroidetes . Analysis of 67 Bacteroidetes sorted-MAGs showed conserved patterns of carbon metabolism across four clades. These results indicate that mini-metagenomics enables genome-resolved investigation of predicted metabolism and demonstrates the utility of combining metagenomics methods to tap into the diversity of heterogeneous microbial assemblages. IMPORTANCE Microbial ecologists have historically used cultivation-based approaches as well as amplicon sequencing and shotgun metagenomics to characterize microbial diversity in soil. However, challenges persist in the study of microbial diversity, including the recalcitrance of the majority of microorganisms to laboratory cultivation and limited sequence assembly from highly complex samples. The uncultivated majority thus remains a reservoir of untapped genetic diversity. To address some of the challenges associated with bulk metagenomics as well as low throughput of single-cell genomics, we applied flow cytometry-enabled mini-metagenomics to capture expanded microbial diversity from forest soil and compare it to soil bulk metagenomics. Our resulting data from this pooled-cell sorting approach combined with bulk metagenomics revealed increased phylogenetic diversity through novel soil taxa and rare biosphere members. In-depth analysis of genomes within the highly represented Bacteroidetes phylum provided insights into conserved and clade-specific patterns of carbon metabolism.more » « less
An official website of the United States government

