skip to main content


Title: Electromagnetic-gravitational perturbations of Kerr–Newman spacetime: The Teukolsky and Regge–Wheeler equations
We derive the equations governing the linear stability of Kerr–Newman spacetime to coupled electromagnetic-gravitational perturbations. The equations generalize the celebrated Teukolsky equation for curvature perturbations of Kerr, and the Regge–Wheeler equation for metric perturbations of Reissner–Nordström. Because of the “apparent indissolubility of the coupling between the spin-1 and spin-2 fields”, as put by Chandrasekhar, the stability of Kerr–Newman spacetime cannot be obtained through standard decomposition in modes. Due to the impossibility to decouple the modes of the gravitational and electromagnetic fields, the equations governing the linear stability of Kerr–Newman have not been previously derived. Using a tensorial approach that was applied to Kerr, we produce a set of generalized Regge–Wheeler equations for perturbations of Kerr–Newman, which are suitable for the study of linearized stability by physical space methods. The physical space analysis overcomes the issue of coupling of spin-1 and spin-2 fields and represents the first step towards an analytical proof of the stability of the Kerr–Newman black hole.  more » « less
Award ID(s):
2006741 2128386
NSF-PAR ID:
10327394
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Hyperbolic Differential Equations
Volume:
19
Issue:
01
ISSN:
0219-8916
Page Range / eLocation ID:
1 to 139
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract It was shown recently that the static tidal response coefficients, called Love numbers, vanish identically for Kerr black holes in four dimensions. In this work, we confirm this result and extend it to the case of spin-0 and spin-1 perturbations. We compute the static response of Kerr black holes to scalar, electromagnetic, and gravitational fields at all orders in black hole spin. We use the unambiguous and gauge-invariant definition of Love numbers and their spin-0 and spin-1 analogs as Wilson coefficients of the point particle effective field theory. This definition also allows one to clearly distinguish between conservative and dissipative response contributions. We demonstrate that the behavior of Kerr black hole responses to spin-0 and spin-1 fields is very similar to that of the spin-2 perturbations. In particular, static conservative responses vanish identically for spinning black holes. This implies that vanishing Love numbers are a generic property of black holes in four-dimensional general relativity. We also show that the dissipative part of the response does not vanish even for static perturbations due to frame-dragging. 
    more » « less
  2. A bstract Perturbations of massless fields in the Kerr-Newman black hole background enjoy a (“Love”) SL(2 , ℝ) symmetry in the suitably defined near zone approximation. We present a detailed study of this symmetry and show how the intricate behavior of black hole responses in four and higher dimensions can be understood from the SL(2 , ℝ) representation theory. In particular, static perturbations of four-dimensional black holes belong to highest weight SL(2 , ℝ) representations. It is this highest weight properety that forces the static Love numbers to vanish. We find that the Love symmetry is tightly connected to the enhanced isometries of extremal black holes. This relation is simplest for extremal charged spherically symmetric (Reissner-Nordström) solutions, where the Love symmetry exactly reduces to the isometry of the near horizon AdS 2 throat. For rotating (Kerr-Newman) black holes one is lead to consider an infinite-dimensional SL(2 , ℝ) ⋉ $$ \hat{\textrm{U}}{(1)}_{\mathcal{V}} $$ U ̂ 1 V extension of the Love symmetry. It contains three physically distinct subalgebras: the Love algebra, the Starobinsky near zone algebra, and the near horizon algebra that becomes the Bardeen-Horowitz isometry in the extremal limit. We also discuss other aspects of the Love symmetry, such as the geometric meaning of its generators for spin weighted fields, connection to the no-hair theorems, non-renormalization of Love numbers, its relation to (non-extremal) Kerr/CFT correspondence and prospects of its existence in modified theories of gravity. 
    more » « less
  3. A bstract The phenomenon of gravitational particle production can take place for quantum fields in curved spacetime. The abundance and energy spectrum of gravitationally produced particles is typically calculated by solving the field’s mode equations on a time-dependent background metric. For purposes of studying dark matter production in an inflationary cosmology, these mode equations are often solved numerically, which is computationally intensive, especially for the rapidly-oscillating high-momentum modes. However, these same modes are amenable to analytic evaluation via the Exact Wentzel-Kramers-Brillouin (EWKB) method, where gravitational particle production is a manifestation of the Stokes phenomenon. These analytic techniques have been used in the past to study gravitational particle production for spin-0 bosons. We extend the earlier work to study gravitational production of spin-1/2 and spin-3/2 fermions. We derive an analytic expression for the connection matrix (valid to all orders in an adiabatic parameter ħ ) that relates Bogoliubov coefficients across a Stokes line connecting a merged pair of simple turning points. By comparing the analytic approximation with a direct numerical integration of the mode equations, we demonstrate an excellent agreement and highlight the utility of the Stokes phenomenon formalism applied to fermions. We discuss the implications for an analytic understanding of catastrophic particle production due to vanishing sound speed, which can occur for a spin-3/2 Rarita-Schwinger field. 
    more » « less
  4. null (Ed.)
    We present fully general relativistic simulations of the quasi-circular inspiral and merger of charged, non-spinning, binary black holes with charge-to-mass ratio λ≤0.3. We discuss the key features that enabled long term and stable evolutions of these binaries. We also present a formalism for computing the angular momentum carried away by electromagnetic waves, and the electromagnetic contribution to black-hole horizon properties. We implement our formalism and present the results for the first time in numerical-relativity simulations. In addition, we compare our full non-linear solutions with existing approximate models for the inspiral and ringdown phases. We show that Newtonian models based on the quadrupole approximation have errors of 20 % - 100 % in key gauge-invariant quantities. On the other hand, for the systems considered, we find that estimates of the remnant black hole spin based on the motion of test particles in Kerr-Newman spacetimes agree with our non-linear calculations to within a few percent. Finally, we discuss the prospects for detecting black hole charge by future gravitational-wave detectors using either the inspiral-merger-ringdown signal or the ringdown signal alone. 
    more » « less
  5. Abstract We introduce new methods to numerically construct for the first time stationary axisymmetric black hole solutions in Einstein-aether theory and study their properties. The key technical challenge is to impose regularity at the spin-2, 1, and 0 wave mode horizons. Interestingly we find the metric horizon, and various wave mode horizons, are not Killing horizons, having null generators to which no linear combination of Killing vectors is tangent, and which spiral from pole to equator or vice versa. Existing phenomenological constraints result in two regions of coupling parameters where the theory is viable and some couplings are large; region I with a large twist coupling and region II with also a (somewhat) large expansion coupling. Currently these constraints do not include tests from strong field dynamics, such as observations of black holes and their mergers. Given the large aether coupling(s) one might expect such dynamics to deviate significantly from general relativity (GR), and hence to further constrain the theory. Here we argue this is not the case, since for these parameter regions solutions exist where the aether is ‘painted’ onto a metric background that is very close to that of GR. This painting for region I is approximately independent of the large twist coupling, and for region II is also approximately independent of the large expansion coupling and normal to a maximal foliation of the spacetime. We support this picture analytically for weak fields, and numerically for rotating black hole solutions, which closely approximate the Kerr metric. 
    more » « less