skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical Finger Kinematic Models Derived From Virtual Grasping of Various Cylindrical Objects With the Family of Conic Sections
Abstract In this study, a numerical framework for joint rotation configuration models of a finger is proposed. The basic idea is to replicate the finger’s geometric posture observed when the human hand grasps a cylindrical object with various cross sections. In the model development, objects with the cross section adopted from the curves of order two (the family of conic sections) are taken into consideration to realize various finger postures. In addition, four different grasp styles, which simulate the individual-specific contact pattern between the surfaces of object and finger, are modeled and applied for the formulation of numerical models. An idea on how to change flexion/extension patterns in the middle of excursion of movement is proposed and discussed. Series of numerical studies have been conducted and analyzed to evaluate the proposed models. From the results, one can see the models’ feasibility and viability as a solution to describing finger’s flexion/extension movements (FEMs) for grasping patterns.  more » « less
Award ID(s):
1751770
PAR ID:
10237552
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Mechanisms and Robotics
Volume:
13
Issue:
1
ISSN:
1942-4302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    With the development of advanced robotic hands, a reliable neural-machine interface is essential to take full advantage of the functional dexterity of the robots. In this preliminary study, we developed a novel method to estimate isometric forces of individual fingers continuously and concurrently during dexterous finger flexion and extension. Specifically, motor unit (MU) discharge activity was extracted from the surface high-density electromyogram (EMG) signals recorded from the finger extensors and flexors, respectively. The MU information was separated into different groups to be associated with the flexion or extension of individual fingers and was then used to predict individual finger forces during multi-finger flexion and extension tasks. Compared with the conventional EMG amplitude-based method, our method can obtain a better force estimation performance (a higher correlation and a smaller estimation error between the predicted and the measured force) when a linear regression model was used. Further exploration of our method can potentially provide a robust neural-machine interface for intuitive control of robotic hands. 
    more » « less
  2. This paper presents a compliant, underactuated finger for the development of anthropomorphic robotic and prosthetic hands. The finger achieves both flexion/extension and adduction/abduction on the metacarpophalangeal joint, by using two actuators. The design employs moment arm pulleys to drive the tendon laterally and amplify the abduction motion, while also maintaining the flexion motion. Particular emphasis has been given to the analysis of the mechanism. The proposed finger has been fabricated with the hybrid deposition manufacturing technique and the actuation mechanism's efficiency has been validated with experiments that include the computation of the reachable workspace, the assessment of the exerted forces at the fingertip, the demonstration of the feasible motions, and the presentation of the grasping and manipulation capabilities. The proposed mechanism facilitates the collaboration of the two actuators to increase the exerted finger forces. Moreover, the extended workspace allows the execution of dexterous manipulation tasks. 
    more » « less
  3. null (Ed.)
    Objective: A reliable neural-machine interface offers the possibility of controlling advanced robotic hands with high dexterity. The objective of this study was to develop a decoding method to estimate flexion and extension forces of individual fingers concurrently. Methods: First, motor units (MUs) firing information were identified through surface electromyogram (EMG) decomposition, and the MUs were further categorized into different pools for the flexion and extension of individual fingers via a refinement procedure. MU firing rate at the populational level was calculated, and the individual finger forces were then estimated via a bivariate linear regression model (neural-drive method). Conventional EMG amplitude-based method was used as a comparison. Results: Our results showed that the neural-drive method had a significantly better performance (lower estimation error and higher correlation) compared with the conventional method. Conclusion: Our approach provides a reliable neural decoding method for dexterous finger movements. Significance: Further exploration of our method can potentially provide a robust neural-machine interface for intuitive control of robotic hands. 
    more » « less
  4. In this work, a knee sleeve is presented for application in physical therapy applications relating to knee rehabilitation. The device is instrumented with sixteen piezoresistive sensors to measure knee angles during exercise, and can support at-home rehabilitation methods. The development of the device is presented. Testing was performed on eighteen subjects, and knee angles were predicted using a machine learning regressor. Subject-specific and device-specific models are analyzed and presented. Subject-specific models average root mean square errors of 7.6 and 1.8 degrees for flexion/extension and internal/external rotation, respectively. Device-specific models average root mean square errors of 12.6 and 3.5 degrees for flexion/extension and internal/external rotation, respectively. The device presented in this work proved to be a repeatable, reusable, low-cost device that can adequately model the knee’s flexion/extension and internal/external rotation angles for rehabilitation purposes. 
    more » « less
  5. null (Ed.)
    Objective: Functional electrical stimulation (FES) is a common technique to elicit muscle contraction and help improve muscle strength. Traditional FES over the muscle belly typically only activates superficial muscle regions. In the case of hand FES, this prevents the activation of the deeper flexor muscles which control the distal finger joints. Here, we evaluated whether an alternative transcutaneous nerve-bundle stimulation approach can activate both superficial and deep extrinsic finger flexors using a high-density stimulation grid. Methods: Transverse ultrasound of the forearm muscles was used to obtain cross-sectional images of the underlying finger flexors during stimulated finger flexions and kinematically-matched voluntary motions. Finger kinematics were recorded, and an image registration method was used to capture the large deformation of the muscle regions during each flexion. This deformation was used as a surrogate measure of the contraction of muscle tissue, and the regions of expanding tissue can identify activated muscles. Results: The nerve-bundle stimulation elicited contractions in the superficial and deep finger flexors. Both separate and concurrent activation of these two muscles were observed. Joint kinematics of the fingers also matched the expected regions of muscle contractions. Conclusions: Our results showed that the nerve-bundle stimulation technique can activate the deep extrinsic finger flexors, which are typically not accessible via traditional surface FES. Significance: Our nerve-bundle stimulation method enables us to produce the full range of motion of different joints necessary for various functional grasps, which could benefit future neuroprosthetic applications. 
    more » « less