skip to main content

Title: Science Data Products for AMPERE
Birkeland currents that flow in the auroral zones produce perturbation magnetic fields that may be detected using magnetometers onboard low-Earth orbit satellites. The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) uses magnetic field data from the attitude control system of each Iridium satellite. These data are processed to obtain the location, intensity and dynamics of the Birkeland currents. The methodology is based on an orthogonal basis function expansion and associated data fitting. The theory of magnetic fields and currents on spherical shells provides the mathematical basis for generating the AMPERE science data products. The application of spherical cap harmonic basis and elementary current system methods to the Iridium data are discussed and the procedures for generating the AMPERE science data products are described.
Authors:
; ; ; ; ;
Editors:
Dunlop, M.; Lühr, H.
Award ID(s):
2002574
Publication Date:
NSF-PAR ID:
10237581
Journal Name:
Ionospheric Multi-Spacecraft Analysis Tools, ISSI Scientific Report Series
Volume:
17
Page Range or eLocation-ID:
141 – 165
Sponsoring Org:
National Science Foundation
More Like this
  1. Dunlop, M. W. ; Lühr, H. (Ed.)
    Polar ionospheric electrodynamics plays an important role in the Sun–Earth connection chain, acting as one of the major driving forces of the upper atmosphere and providing us with a means to probe physical processes in the distant magnetosphere. Accurate specification of the constantly changing conditions of high-latitude ionospheric electrodynamics has long been of paramount interest to the geospace science community. The Assimilative Mapping of Ionospheric Electrodynamics procedure, developed with an emphasis on inverting ground-based magnetometer observations for historical reasons, has long been used in the geospace science community as a way to obtain complete maps of high-latitude ionospheric electrodynamics bymore »overcoming the limitations of a given geospace monitoring system. This Chapter presents recent technical progress on inverse and data assimilation procedures motivated primarily by availability of regular monitoring of high-latitude electrodynamics by space-borne instruments. The method overview describes how electrodynamic state variables are represented with polar-cap spherical harmonics and how coefficients are estimated from the point of view of the Bayesian inferential framework. Some examples of the recent applications to analysis of SuperDARN plasma drift, Iridium, and DMSP magnetic fields, as well as DMSP auroral particle precipitation data are included to demonstrate the method.« less
  2. Abstract. The high-latitude atmosphere is a dynamic region with processes that respond to forcing from the Sun, magnetosphere, neutral atmosphere, andionosphere. Historically, the dominance of magnetosphere–ionosphere interactions has motivated upper atmospheric studies to use magneticcoordinates when examining magnetosphere–ionosphere–thermosphere coupling processes. However, there are significant differences between thedominant interactions within the polar cap, auroral oval, and equatorward of the auroral oval. Organising data relative to these boundaries hasbeen shown to improve climatological and statistical studies, but the process of doing so is complicated by the shifting nature of the auroral ovaland the difficulty in measuring its poleward and equatorward boundaries. This studymore »presents a new set of open–closed magnetic field line boundaries (OCBs) obtained from Active Magnetosphere and Planetary ElectrodynamicsResponse Experiment (AMPERE) magnetic perturbation data. AMPERE observations of field-aligned currents (FACs) are used to determine the location ofthe boundary between the Region 1 (R1) and Region 2 (R2) FAC systems. This current boundary is thought to typically lie a few degrees equatorwardof the OCB, making it a good candidate for obtaining OCB locations. The AMPERE R1–R2 boundaries are compared to the Defense MeteorologicalSatellite Program Special Sensor J (DMSP SSJ) electron energy flux boundaries to test this hypothesis and determine the best estimate of thesystematic offset between the R1–R2 boundary and the OCB as a function of magnetic local time. These calibrated boundaries, as well as OCBsobtained from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) observations, are validated using simultaneous observations of theconvection reversal boundary measured by DMSP. The validation shows that the OCBs from IMAGE and AMPERE may be used together in statisticalstudies, providing the basis of a long-term data set that can be used to separate observations originating inside and outside of the polar cap.« less
  3. Abstract The Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving option (ELFIN-STAR, or heretoforth simply: ELFIN) mission comprises two identical 3-Unit (3U) CubeSats on a polar (∼93 ∘ inclination), nearly circular, low-Earth (∼450 km altitude) orbit. Launched on September 15, 2018, ELFIN is expected to have a >2.5 year lifetime. Its primary science objective is to resolve the mechanism of storm-time relativistic electron precipitation, for which electromagnetic ion cyclotron (EMIC) waves are a prime candidate. From its ionospheric vantage point, ELFIN uses its unique pitch-angle-resolving capability to determine whether measured relativistic electron pitch-angle and energy spectra within the loss conemore »bear the characteristic signatures of scattering by EMIC waves or whether such scattering may be due to other processes. Pairing identical ELFIN satellites with slowly-variable along-track separation allows disambiguation of spatial and temporal evolution of the precipitation over minutes-to-tens-of-minutes timescales, faster than the orbit period of a single low-altitude satellite (T orbit ∼ 90 min). Each satellite carries an energetic particle detector for electrons (EPDE) that measures 50 keV to 5 MeV electrons with $\Delta $ Δ E/E < 40% and a fluxgate magnetometer (FGM) on a ∼72 cm boom that measures magnetic field waves (e.g., EMIC waves) in the range from DC to 5 Hz Nyquist (nominally) with <0.3 nT/sqrt(Hz) noise at 1 Hz. The spinning satellites (T spin $\,\sim $ ∼ 3 s) are equipped with magnetorquers (air coils) that permit spin-up or -down and reorientation maneuvers. Using those, the spin axis is placed normal to the orbit plane (nominally), allowing full pitch-angle resolution twice per spin. An energetic particle detector for ions (EPDI) measures 250 keV – 5 MeV ions, addressing secondary science. Funded initially by CalSpace and the University Nanosat Program, ELFIN was selected for flight with joint support from NSF and NASA between 2014 and 2018 and launched by the ELaNa XVIII program on a Delta II rocket (with IceSatII as the primary). Mission operations are currently funded by NASA. Working under experienced UCLA mentors, with advice from The Aerospace Corporation and NASA personnel, more than 250 undergraduates have matured the ELFIN implementation strategy; developed the instruments, satellite, and ground systems and operate the two satellites. ELFIN’s already high potential for cutting-edge science return is compounded by concurrent equatorial Heliophysics missions (THEMIS, Arase, Van Allen Probes, MMS) and ground stations. ELFIN’s integrated data analysis approach, rapid dissemination strategies via the SPace Environment Data Analysis System (SPEDAS), and data coordination with the Heliophysics/Geospace System Observatory (H/GSO) optimize science yield, enabling the widest community benefits. Several storm-time events have already been captured and are presented herein to demonstrate ELFIN’s data analysis methods and potential. These form the basis of on-going studies to resolve the primary mission science objective. Broad energy precipitation events, precipitation bands, and microbursts, clearly seen both at dawn and dusk, extend from tens of keV to >1 MeV. This broad energy range of precipitation indicates that multiple waves are providing scattering concurrently. Many observed events show significant backscattered fluxes, which in the past were hard to resolve by equatorial spacecraft or non-pitch-angle-resolving ionospheric missions. These observations suggest that the ionosphere plays a significant role in modifying magnetospheric electron fluxes and wave-particle interactions. Routine data captures starting in February 2020 and lasting for at least another year, approximately the remainder of the mission lifetime, are expected to provide a very rich dataset to address questions even beyond the primary mission science objective.« less
  4. Abstract The World Magnetic Model (WMM) is a geomagnetic main field model that is widely used for navigation by governments, industry and the general public. In recent years, the model has been derived using high accuracy magnetometer data from the Swarm mission. This study explores the possibility of developing future WMMs in the post-Swarm era using data from the Iridium satellite constellation. Iridium magnetometers are primarily used for attitude control, so they are not designed to produce the same level of accuracy as magnetic data from scientific missions. Iridium magnetometer errors range from 30 nT quantization to hundreds of nTmore »errors due to spacecraft contamination and calibration uncertainty, whereas Swarm measurements are accurate to about 1 nT. The calibration uncertainty in the Iridium measurements is identified as a major error source, and a method is developed to calibrate the spacecraft measurements using data from a subset of the INTERMAGNET observatory network producing quasi-definitive data on a regular basis. After calibration, the Iridium data produced main field models with approximately 20 nT average error and 40 nT maximum error as compared to the CHAOS-7.2 model. For many scientific and precision navigation applications, highly accurate Swarm-like measurements are still necessary, however, the Iridium-based models were shown to meet the WMM error tolerances, indicating that Iridium is a viable data source for future WMMs. Graphical Abstract« less
  5. Ampere Scientific’s VARmetricTM measurement system for Vacuum Arc Remelting (VAR) furnaces passively monitors the distribution of arcs over time during VAR in real time. The arc behavior is known to impact both product yield and quality and can pose potentially catastrophic operating conditions. Arc position sensing with VARmetricTM enables a new approach to control the heat input to the melt pool. Transverse external magnetic fields were applied to push the arcs via the Lorentz force while measuring the arc location to control the arc distribution over time. This has been tested on Ampere Scientific’s small-scale laboratory arc furnace with electromagnetsmore »used for control for up to 60 seconds while monitoring the arc location with VARmetricTM. The arc distributions were shown to be significantly different from the uncontrolled distributions with distinct thermal profiles at the melt pool. Alternatively, this type of control can be periodically applied to react to undesirable arc conditions.« less