skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Si/Ge (111) Semicoherent Interfaces: Responses to an In‐Plane Shear and Interactions with Lattice Dislocations
Concurrent atomistic–continuum simulations are employed to study Si/Ge (111) semicoherent interfaces in terms of their responses to an in‐plane shear and interactions with lattice dislocations. Three types of Si/Ge interfaces, differing in interfacial structures and energy, are considered. Type I interface coincides with the shuffle‐set slip plane and contains a hexagonal network of edge dislocations. Type II and Type III interfaces both coincide with the glide‐set slip plane, yet they contain, respectively, a triangular and a hexagonal network of Shockley partial dislocations. The simulations show that among the three types of interfaces, 1) Type I interface is the least stable subject to an in‐plane shear and 2) Type III interface impedes the gliding of lattice dislocations the most significantly.  more » « less
Award ID(s):
1761512
PAR ID:
10239133
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
physica status solidi (b)
Volume:
257
Issue:
12
ISSN:
0370-1972
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The paper presents a multiscale study of the kinetic processes of the heteroepitaxial growth of the PbSe/PbTe (111) and PbTe/PbSe(001) systems, using the Concurrent Atomistic-Continuum (CAC) method as the simulation tool. The CAC simulations have reproduced the Stranski–Krastanov growth mode and the layer-by-layer growth mode of the two systems, respectively; the pyramid-shaped island morphology of the PbSe epilayer on PbTe (111), the square-like misfit dislocation networks within the PbTe/PbSe(001) interface, and the critical thickness for the PbTe/PbSe(001) system at which coherent interfaces transit to semi-coherent interfaces with the formation of misfit dislocations, all in good agreement with experimental observations. Four types of misfit dislocations are found to form during the growth of the two PbTe/PbSe heterosystems, and hexagonal-like misfit dislocation networks are observed within the PbSe/PbTe(111) interfaces. The growth processes, including the formation of misfit dislocations, have been visualized. Dislocation half-loops have been observed to nucleate from the epilayer surfaces. These half-loops extend towards the interface by climb or glide motions, interact with other half-loops, and form misfit dislocation networks at the interfaces and threading dislocations extending from interfaces to epilayer surfaces. The dominant types of misfit dislocations in both systems are found to be those with Burgers vectors parallel to the interfaces, whereas the misfit dislocations with Burgers vectors inclined to the interface have a low likelihood of generation and tend to annihilate. The size of the substrate is demonstrated to have a significant effect on the formation, evolution, and distribution of dislocations on the growth of PbSe on PbTe(111). 
    more » « less
  2. Abstract Molecular dynamics (MD) simulations are carried out to investigate the effects of the type and spacing of FCC/BCC interfaces on the deformation and spall behavior. The simulations are carried out using model Cu/Ta multilayers with six different types of interfaces. The results suggest that interface type can significantly affect the structure and intensity of the incoming shock wave, change the activated slip systems, alter dislocation slip and twinning behavior, affect where and how voids are nucleated during spallation and the resulting spall strength. Moreover, the above aspects are significantly affected by the interface spacing. A transition from homogeneous to heterogeneous dislocation nucleation occurs as the interface spacing is decreased to 6 nm. Depending on interface type and spacing, damage (voids) nucleation and spall failure is observed to occur not only at the Cu/Ta interfaces, but also in the weaker Cu layer interior, or even in the stronger Ta layer interior, although different mechanisms underlie each of these three distinct failure modes. These findings point to the fact that, depending on the combination of interface type and spacing, interfaces can lead to both strengthening and weakening of the Cu/Ta multilayered microstructures. 
    more » « less
  3. null (Ed.)
    Twin–twin interactions (TTIs) take place when multiple twinning modes and/or twin variants are activated and interact with each other. Twin–twin junctions (TTJs) form and affect subsequent twinning/detwinning and dislocation slip, which is particularly important in determining mechanical behavior of hexagonal metals because twinning is one major deformation mode. Atomic-level study, including crystallographic analysis, transmission electronic microscopy (TEM), and molecular dynamics (MD) simulations, can provide insights into understanding the process of TTIs and structural characters associated with TTJs. Crystallographic analysis enables the classification of TTIs and the prediction of possible interfaces of twin–twin boundaries (TTBs), characters of boundary dislocations, and possible reactions of twinning dislocations and lattice dislocations at TTBs. MD simulations can explore the process of TTIs, microstructures of TTJs, atomic structures of TTBs, and stress fields associated with TTJs. The predictions based on crystallographic analysis and the findings from MD can be partially verified by TEM. More importantly, these results provide explanation for microstructural characters of TTJs and guidance for further TEM characterizations. 
    more » « less
  4. We present a molecular dynamics study of the thermal transport properties of PbTe/PbSe (111) and PbTe/PbSe (100) interfaces at room temperature. The PbTe/PbSe heterostructures are obtained through simulations of the kinetic processes of direct bonding of PbTe and PbSe crystals. The atomic-scale dislocation core structures and the misfit dislocation networks in the heterostructures obtained in the simulations are found to closely match experimental data. Two types of heat transfer experiments are then simulated: a heat-sink heat-source experiment and an ultrashort heat pulse experiment. Thermal boundary resistance is calculated for three distinct interface types: coherent, semi-coherent, and semi-coherent with pinned dislocations. Both types of simulations consistently capture the significant role of the misfit dislocations on thermal resistance. The effect of the mobility of dislocations on thermal resistance is demonstrated for the first time through comparing the thermal boundary resistance of interfaces containing pinned dislocations and with those containing unpinned dislocations. In addition, the thermal boundary resistance is found to strongly depend on the length of the specimen and the area of the interface. 
    more » « less
  5. Heusler compounds, in both cubic and hexagonal polymorphs, exhibit a remarkable range of electronic, magnetic, elastic, and topological properties, rivaling that of the transition metal oxides. To date, research on these quantum materials has focused primarily on bulk magnetic and thermoelectric properties or on applications in spintronics. More broadly, however, Heuslers provide a platform for discovery and manipulation of emergent properties at well-defined crystalline interfaces. Here, motivated by advances in the epitaxial growth of layered Heusler heterostructures, I present a vision for Heusler interfaces, focusing on the frontiers and challenges that lie beyond spintronics. The ability to grow these materials epitaxially on technologically important semiconductor substrates, such as GaAs, Ge, and Si, provides a direct path for their integration with modern electronics. Further advances will require new methods to control the stoichiometry and defects to “electronic grade” quality and to control the interface abruptness and ordering at the atomic scale. 
    more » « less