Spin-gapless semiconductor (SGS) is a new class of material that has been studied recently for potential applications in spintronics. This material behaves as an insulator for one spin channel, and as a gapless semiconductor for the opposite spin. In this work, we present results of a computational study of two quaternary Heusler alloys, MnCrNbAl and MnCrTaAl that have been recently reported to exhibit spin-gapless semiconducting electronic structure. In particular, using density functional calculations we analyze the effect of external pressure on electronic and magnetic properties of these compounds. It is shown that while these two alloys exhibit nearly SGS behavior at optimal lattice constants and at negative pressure (expansion), they are half-metals at equilibrium, and magnetic semiconductors at larger lattice constant. At the same time, reduction of the unit cell volume has a detrimental effect on electronic properties of these materials, by modifying the exchange splitting of their electronic structure and ultimately destroying their half-metallic/semiconducting behavior. Thus, our results indicate that both MnCrNbAl and MnCrTaAl may be attractive for practical device applications in spin-based electronics, but a potential compression of the unit cell volume (e.g. in thin-film applications) should be avoided.
more »
« less
Heusler interfaces—Opportunities beyond spintronics?
Heusler compounds, in both cubic and hexagonal polymorphs, exhibit a remarkable range of electronic, magnetic, elastic, and topological properties, rivaling that of the transition metal oxides. To date, research on these quantum materials has focused primarily on bulk magnetic and thermoelectric properties or on applications in spintronics. More broadly, however, Heuslers provide a platform for discovery and manipulation of emergent properties at well-defined crystalline interfaces. Here, motivated by advances in the epitaxial growth of layered Heusler heterostructures, I present a vision for Heusler interfaces, focusing on the frontiers and challenges that lie beyond spintronics. The ability to grow these materials epitaxially on technologically important semiconductor substrates, such as GaAs, Ge, and Si, provides a direct path for their integration with modern electronics. Further advances will require new methods to control the stoichiometry and defects to “electronic grade” quality and to control the interface abruptness and ordering at the atomic scale.
more »
« less
- PAR ID:
- 10595161
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 7
- Issue:
- 8
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Here, we present results of a computational study of electronic, magnetic, and structural properties of FeVTaAl and FeCrZrAl, quaternary Heusler alloys that have been recently reported to exhibit spin-gapless semiconducting behavior. Our calculations indicate that these materials may crystallize in regular Heusler cubic structure, which has a significantly lower energy than the inverted Heusler cubic phase. Both FeVTaAl and FeCrZrAl exhibit ferromagnetic alignment, with an integer magnetic moment per unit cell at equilibrium lattice constant. Band structure analysis reveals that while both FeVTaAl and FeCrZrAl indeed exhibit nearly spin-gapless semiconducting electronic structure at their optimal lattice parameters, FeVTaAl is a 100% spin-polarized semimetal, while FeCrZrAl is a magnetic semiconductor. Our calculations indicate that expansion of the unit cell volume retains 100% spin-polarization of both compounds. In particular, both FeVTaAl and FeCrZrAl are 100% spin-polarized magnetic semiconductors at the largest considered lattice constant. At the same time, at smaller lattice parameters, both compounds exhibit a more complex electronic structure, somewhat resembling half-metallic properties. Thus, both of these alloys may be potentially useful for practical applications in spin-based electronics, but their electronic structure is very sensitive to the external pressure. We hope that these results will stimulate experimental efforts to synthesize these materials.more » « less
-
This article examines recent advances in the field of antiferromagnetic spintronics from the perspective of potential device realization and applications. We discuss advances in the electrical control of antiferromagnetic order by current-induced spin–orbit torques, particularly in antiferromagnetic thin films interfaced with heavy metals. We also review possible scenarios for using voltage-controlled magnetic anisotropy as a more efficient mechanism to control antiferromagnetic order in thin films with perpendicular magnetic anisotropy. Next, we discuss the problem of electrical detection (i.e., readout) of antiferromagnetic order and highlight recent experimental advances in realizing anomalous Hall and tunneling magnetoresistance effects in thin films and tunnel junctions, respectively, which are based on noncollinear antiferromagnets. Understanding the domain structure and dynamics of antiferromagnetic materials is essential for engineering their properties for applications. For this reason, we then provide an overview of imaging techniques as well as micromagnetic simulation approaches for antiferromagnets. Finally, we present a perspective on potential applications of antiferromagnets for magnetic memory devices, terahertz sources, and detectors.more » « less
-
Wide-bandgap semiconductors are now leading the way to new physical phenomena and device applications at nanoscale dimensions. The impact of defects on the electronic properties of these materials increases as their size decreases, motivating new techniques to characterize and begin to control these electronic states. Leading these advances have been the semiconductors ZnO, GaN, and related materials. This paper highlights the importance of native point defects in these semiconductors and describes how a complement of spatially localized surface science and spectroscopy techniques in three dimensions can characterize, image, and begin to control these electronic states at the nanoscale. A combination of characterization techniques including depth-resolved cathodoluminescence spectroscopy, surface photovoltage spectroscopy, and hyperspectral imaging can describe the nature and distribution of defects at interfaces at both bulk and nanoscale surfaces, their metal interfaces, and inside nanostructures themselves. These features as well as temperature and mechanical strain inside wide-bandgap device structures at the nanoscale can be measured even while these devices are operating. These advanced capabilities enable several new directions for describing defects at the nanoscale, showing how they contribute to device degradation, and guiding growth processes to control them.more » « less
-
Abstract In this work, we study the interface obtained by depositing a monolayer of a Blatter radical derivative on polycrystalline cobalt. By examining the occupied and unoccupied states at the interface, using soft X‐ray techniques, combined with electronic structure calculations, we could simultaneously determine the electronic structure of both the molecular and ferromagnetic sides of the interface, thus obtaining a full understanding of the interfacial magnetic properties. We found that the molecule is strongly hybridized with the surface. Changes in the core level spectra reflect the modification of the molecule and the cobalt electronic structures inducing a decrease in the magnetic moment of the cobalt atoms bonded to the molecules which, in turn, lose their radical character. Our method allowed us to screen, beforehand, organic/ferromagnetic interfaces given their potential applications in spintronics.more » « less
An official website of the United States government
