skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High Power Density EMI Mitigation in Power Electronics Converters: Active and Integrated Solutions
raditional bulk passive EMI filters are the “necessary evil” for modern power electronics systems yet they are also the bottle-neck for the improvement of power density. This limitation is caused by the low power-density of passive components themselves and the conventional passive components are structurally optimized when assembled together. Use of active circuits and integration approach in EMI noise filtering have been proven to be effective in shrinking the size and weight of traditional EMI filters. This paper presents an overview of the latest works in the area of active EMI filtering, passive integration and a combination of both techniques. The paper compares passive volume reduction with active EMI filtering and summaries a list of materials and processes involved in the passive integration techniques. These new approaches provide potential high density solutions for EMI mitigation in power electronics converters.  more » « less
Award ID(s):
1846917
PAR ID:
10241026
Author(s) / Creator(s):
Date Published:
Journal Name:
11th International Conference on Integrated Power Electronics Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In the power electronics equipment, passive EMI filters occupy up to 30% of system's volume and weight. In order to reduce the size of passive EMI filter in the power electronics system, active EMI filters (AEF) is introduced. With the AEF approaches, the size of the passive component within the EMI filter can be reduced by more than 50%. The higher attenuation achieved by AEFs, the more size reduction can be obtained through AEFs methodology. However, the performance of AEF with feedback control is limited to around 24 dB attenuation in the reported work. New methodology needs to be found to push forward the performance. In this study, a novel digital active EMI filter (DAEF) with the resonant controller, which provides ultra high-gain at frequencies of interest, is demonstrated for DM noise attenuation. The experimental test results show that the proposed EMI filter has 45 dB more attenuation at 150 kHz than the conventional passive EMI filter, which is also the highest attenuation reported in the AEF literature. 
    more » « less
  2. null (Ed.)
    The Power Engineering Group at the University of Puerto Rico-Mayaguez (UPRM) has implemented several strategies to improve its curriculum and meet new ABET accreditation criteria. Strategies include the revision of course contents, integration of laboratory practices to courses, and a more prominent role of undergraduate research and power electronics in the power engineering curriculum. Courses are being updated to include contemporary topics while keeping fundamental engineering principles. A recent grant by NSF will support on-going efforts to create laboratory practices that would connect the teaching of theoretical principles to actual implementations. Participation in the Center for Power Electronics Systems, a NSF Engineering Research Center, has given UPRM the opportunity to expand course offerings and undergraduate research in power engineering. An important outcome of this curriculum improvement is to motivate students to take an active role in the learning process. 
    more » « less
  3. The design of mixed-technology quasi-reflectionless planar bandpass filters (BPFs), bandstop filters (BSFs), and multi-band filters is reported. The proposed quasi-reflectionless filter architectures comprise a main filtering section that determines the power transmission response (bandpass, bandstop, or multi-band type) of the overall circuit network and auxiliary sections that absorb the reflected radio-frequency (RF) signal energy. By loading the input and output ports of the main filtering section with auxiliary filtering sections that exhibit a complementary transfer function with regard to the main one, a symmetric quasi-reflectionless behavior can be obtained at both accesses of the overall filter. The operating principles of the proposed filter concept are shown through synthesized first-order BPF and BSF designs. Selectivity-increase techniques are also described. They are based on: (i) cascading in-series multiple first-order stages and (ii) increasing the order of the filtering sections. Moreover, the RF design of quasi-reflectionless multi-band BPFs and BSFs is discussed. A hybrid integration scheme in which microstrip-type and lumped-elements are effectively combined within the filter volume is investigated for size miniaturization purposes. For experimental validation purposes, two quasi-reflectionless BPF prototypes (one- and two-stage architectures) centered at 2 GHz and a second-order BSF prototype centered at 1 GHz were designed, manufactured, and measured. 
    more » « less
  4. null (Ed.)
    Filter banks on graphs are shown to be useful for analyzing data defined over networks, as they decompose a graph signal into components with low variation and high variation. Based on recent node-asynchronous implementation of graph filters, this study proposes an asynchronous implementation of filter banks on graphs. In the proposed algorithm nodes follow a randomized collect-compute-broadcast scheme: if a node is in the passive stage it collects the data sent by its incoming neighbors and stores only the most recent data. When a node gets into the active stage at a random time instance, it does the necessary filtering computations locally, and broadcasts a state vector to its outgoing neighbors. When the underlying filters (of the filter bank) are rational functions with the same denominator, the proposed filter bank implementation does not require additional communication between the neighboring nodes. However, computations done by a node increase linearly with the number of filters in the bank. It is also proven that the proposed asynchronous implementation converges to the desired output of the filter bank in the mean-squared sense under mild stability conditions. The convergence is verified also with numerical experiments. 
    more » « less
  5. Abstract Papertronics introduce a sustainable, cost‐effective revolution in electronics, especially for the Internet of Things. This research overcomes the traditional challenges of paper's porosity, which has impeded electronic component fabrication and performance. A novel approach that harnesses paper's natural capillary action, combined with hydrophobic wax patterning, to achieve precise vertical integration of electronic components is introduced. This method marks a significant departure from conventional surface deposition techniques. This study demonstrates the successful creation of tunable resistors, capacitors, and field‐effect transistors, embedded within a single sheet of paper. Contrary to previous assumptions that impeded the use of paper, its rough and porous texture as a strategic advantage, facilitating the precise fabrication of intricate electronic components is leveraged. Machine learning algorithms play an important role in predicting and enhancing the performance of these papertronic components. This innovation facilitates the development of compact printed circuit boards with increased circuit density, enabling the integration of diverse analog and digital circuits in either single or multi‐layer paper formats. The resulting papertronic systems exceed performance benchmarks, offering eco‐friendly disposal through biodegradability or incineration. These breakthroughs establish papertronics as a feasible, eco‐friendly alternative in the electronics industry, permitting widespread adoption and continuous innovation in sustainable electronic solutions. 
    more » « less