skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Online Resource Allocation with Matching Constraints
Matching markets with historical data are abundant in many applications, e.g., matching candidates to jobs in hiring, workers to tasks in crowdsourcing markets, and jobs to servers in cloud services. In all these applications, a match consumes one or more shared and limited resources and the goal is to best utilize these to maximize a global objective. Additionally, one often has historical data and hence some statistics (usually first-order moments) of the arriving agents (e.g., candidates, workers, and jobs) can be learnt. To model these scenarios, we propose a unifying framework, called Multi- Budgeted Online Assignment with Known Adversarial Distributions. In this model,we have a set of offline servers with different deadlines and a set of online job types. At each time, a job of type j arrives. Assigning this job to a server i yields a profit w(i, j) while consuming a(i,j) -- a vector lying in [0, 1]^K -- quantities of distinct resources. The goal is to design an (online) assignment policy that maximizes the total expected profit without violating the (hard) budget constraint. We propose and theoretically analyze two linear programming (LP) based algorithms which are almost optimal among all LP-based approaches. We also propose several heuristics adapted from our algorithms and compare them to other LP-agnostic algorithms using both synthetic as well as real-time cloud scheduling and public safety datasets. Experimental results show that our proposed algorithms are effective and significantly out-perform the baselines. Moreover, we show empirically the trade-off between fairness and efficiency of our algorithms which does well even on fairness metrics without explicitly optimizing for it.  more » « less
Award ID(s):
1749864
PAR ID:
10111460
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Conference on Autonomous Agents and Multiagent Systems (AAMAS)
Page Range / eLocation ID:
1681 - 1689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Online matching markets (OMMs) are commonly used in today’s world to pair agents from two parties (whom we will call offline and online agents) for mutual benefit. However, studies have shown that the algorithms making decisions in these OMMs often leave disparities in matching rates, especially for offline agents. In this article, we propose online matching algorithms that optimize for either individual or group-level fairness among offline agents in OMMs. We present two linear-programming (LP) based sampling algorithms, which achieve competitive ratios at least 0.725 for individual fairness maximization and 0.719 for group fairness maximization. We derive further bounds based on fairness parameters, demonstrating conditions under which the competitive ratio can increase to 100%. There are two key ideas helping us break the barrier of 1-1/𝖾~ 63.2% for competitive ratio in online matching. One is boosting , which is to adaptively re-distribute all sampling probabilities among only the available neighbors for every arriving online agent. The other is attenuation , which aims to balance the matching probabilities among offline agents with different mass allocated by the benchmark LP. We conduct extensive numerical experiments and results show that our boosted version of sampling algorithms are not only conceptually easy to implement but also highly effective in practical instances of OMMs where fairness is a concern. 
    more » « less
  2. This paper examines the income inequality among rideshare drivers resulting from discriminatory cancellations by riders, considering the impact of demographic factors such as gender, age, and race. We investigate the tradeoff between income inequality, referred to as the fairness objective, and system efficiency, known as the profit objective. To address this issue, we propose an online bipartite-matching model that captures the sequential arrival of riders according to a known distribution. The model incorporates the notion of acceptance rates between driver-rider types, which are defined based on demographic characteristics. Specifically, we analyze the probabilities of riders accepting or canceling their assigned drivers, reflecting the level of acceptance between different rider and driver types. We construct a bi-objective linear program as a valid benchmark and propose two LP-based parameterized online algorithms. Rigorous analysis of online competitive ratios is conducted to illustrate the flexibility and efficiency of our algorithms in achieving a balance between fairness and profit. Furthermore, we present experimental results based on real-world and synthetic datasets, validating the theoretical predictions put forth in our study. 
    more » « less
  3. Bipartite-matching markets pair agents on one side of a market with agents, items, or contracts on the opposing side. Prior work addresses online bipartite-matching markets, where agents arrive over time and are dynamically matched to a known set of disposable resources. In this article, we propose a new model, Online Matching with (offline) Reusable Resources under Known Adversarial Distributions ( OM-RR-KAD ) , in which resources on the offline side are reusable instead of disposable; that is, once matched, resources become available again at some point in the future. We show that our model is tractable by presenting an LP-based non-adaptive algorithm that achieves an online competitive ratio of ½-ϵ for any given constant ϵ > 0. We also show that no adaptive algorithm can achieve a ratio of ½ + o (1) based on the same benchmark LP. Through a data-driven analysis on a massive openly available dataset, we show our model is robust enough to capture the application of taxi dispatching services and ride-sharing systems. We also present heuristics that perform well in practice. 
    more » « less
  4. Bipartite matching markets pair agents on one side of a market with agents, items, or contracts on the opposing side. Prior work addresses online bipartite matching markets, where agents arrive over time and are dynamically matched to a known set of disposable resources. In this paper, we propose a new model, Online Matching with (offline) Reusable Resources under Known Adversarial Distributions (OM-RR-KAD), in which resources on the offline side are reusable instead of disposable; that is, once matched, resources become available again at some point in the future. We show that our model is tractable by presenting an LP-based adaptive algorithm that achieves an online competitive ratio of 1/2 - epsilon for any given epsilon > 0. We also show that no non-adaptive algorithm can achieve a ratio of 1/2 + o(1) based on the same benchmark LP. Through a data-driven analysis on a massive openly-available dataset, we show our model is robust enough to capture the application of taxi dispatching services and ridesharing systems. We also present heuristics that perform well in practice. 
    more » « less
  5. null (Ed.)
    Several scientific studies have reported the existence of the income gap among rideshare drivers based on demographic factors such as gender, age, race, etc. In this paper, we study the income inequality among rideshare drivers due to discriminative cancellations from riders, and the tradeoff between the income inequality (called fairness objective) with the system efficiency (called profit objective). We proposed an online bipartite-matching model where riders are assumed to arrive sequentially following a distribution known in advance. The highlight of our model is the concept of acceptance rate between any pair of driver-rider types, where types are defined based on demographic factors. Specially, we assume each rider can accept or cancel the driver assigned to her, each occurs with a certain probability which reflects the acceptance degree from the rider type towards the driver type. We construct a bi-objective linear program as a valid benchmark and propose two LP-based parameterized online algorithms. Rigorous online competitive ratio analysis is offered to demonstrate the flexibility and efficiency of our online algorithms in balancing the two conflicting goals, promotions of fairness and profit. Experimental results on a real-world dataset are provided as well, which confirm our theoretical predictions. 
    more » « less