skip to main content


Title: Nanostructured copper selenide as an ultrasensitive and selective non-enzymatic glucose sensor
CuSe nanostructures exhibit high-efficiency for glucose detection with high sensitivity (19.419 mA mM −1 cm −2 ) and selectivity at a low applied potential of +0.15 V vs. Ag|AgCl, a low detection limit of 0.196 μM and a linear range of glucose detection from 100 nM to 40 μM.  more » « less
Award ID(s):
1710313
NSF-PAR ID:
10244772
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Materials Advances
Volume:
2
Issue:
3
ISSN:
2633-5409
Page Range / eLocation ID:
927 to 932
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Uniform and porous CoNi 2 Se 4 was successfully synthesized by electrodeposition onto a composite electrode comprising reduced graphene oxide (rGO) anchored on a Ni foam substrate (prepared hydrothermally). This CoNi 2 Se 4 –rGO@NF composite electrode has been employed as an electrocatalyst for the direct oxidation of glucose, thereby acting as a high-performance non-enzymatic glucose sensor. Direct electrochemical measurement with the as-prepared electrode in 0.1 M NaOH revealed that the CoNi 2 Se 4 –rGO nanocomposite has excellent electrocatalytic activity towards glucose oxidation in an alkaline medium with a sensitivity of 18.89 mA mM −1 cm −2 and a wide linear response from 1 μM to 4.0 mM at a low applied potential of +0.35 V vs. Ag|AgCl. This study also highlights the effect of decreasing the anion electronegativity on enhancing the electrocatalytic efficiency by lowering the potential needed for glucose oxidation. The catalyst composite also exhibits high selectivity towards glucose oxidation in the presence of several interferents normally found in physiological blood samples. A low glucose detection limit of 0.65 μM and long-term stability along with a short response time of approximately 4 seconds highlights the promising performance of the CoNi 2 Se 4 –rGO@NF electrode for non-enzymatic glucose sensing with high precision and reliability. 
    more » « less
  2. Metal–organic frameworks (MOFs) are considered promising templates for the fabrication of nanostructured materials with high porosities and high surface areas, which are important parameters for enhanced performance in sensing applications. Here, a facile in situ synthetic strategy to construct MOF-derived porous CuO polyhedrons on carbon cloth (CC) is reported. Uniform Cu(OH) 2 nanorods are first synthesized on carbon cloth, followed by the conversion of Cu(OH) 2 nanorods into porous CuO polyhedrons via a copper-based MOF, Cu–BTC, as the intermediate species. When evaluated as a glucose sensing electrode, the as-fabricated CuO polyhedrons/CC composite exhibits a high sensitivity of 13 575 μA mM −1 cm −2 with a fast response time ( t 90 ) of 2.3 s and a low detection limit of 0.46 μM. This work exemplifies the rational fabrication of porous nanostructures on conductive substrates for enhanced performance in glucose detection. 
    more » « less
  3. Nanomaterials have been extensively explored in developing sensors due to their unique properties, contributing to the development of reliable sensor designs with improved sensitivity and specificity. Herein, we propose the construction of a fluorescent/electrochemical dual-mode self-powered biosensor for advanced biosensing using DNA-templated silver nanoclusters (AgNCs@DNA). AgNC@DNA, due to its small size, exhibits advantageous characteristics as an optical probe. We investigated the sensing efficacy of AgNCs@DNA as a fluorescent probe for glucose detection. Fluorescence emitted by AgNCs@DNA served as the readout signal as a response to more H2O2 being generated by glucose oxidase for increasing glucose levels. The second readout signal of this dual-mode biosensor was utilized via the electrochemical route, where AgNCs served as charge mediators between the glucose oxidase (GOx) enzyme and carbon working electrode during the oxidation process of glucose catalyzed by GOx. The developed biosensor features low-level limits of detection (LODs), ~23 μM for optical and ~29 μM for electrochemical readout, which are much lower than the typical glucose concentrations found in body fluids, including blood, urine, tears, and sweat. The low LODs, simultaneous utilization of different readout strategies, and self-powered design demonstrated in this study open new prospects for developing next-generation biosensor devices. 
    more » « less
  4. Two-dimensional (2D) layered materials that integrate metallic conductivity, catalytic activity and the ability to stabilize biological receptors provide unique capabilities for designing electrochemical biosensors for large-scale detection and diagnostic applications. Herein, we report a multifunctional MXene-based 2D nanostructure decorated with enzyme mimetic cerium oxide nanoparticle (MXCeO2) as a novel platform and catalytic amplifier for electrochemical biosensors, specifically targeting the detection of oxidase enzyme substrates. We demonstrate enhanced catalytic efficiency of the MXCeO2 for the reduction of hydrogen peroxide (H2O2) and its ability to immobilize oxidase enzymes, such as glucose oxidase, lactate oxidase and xanthine oxidase. The designed biosensors exhibit high selectivity, stability, and sensitivity, achieving detection limits of 0.8 μM H2O2, 0.49 μM glucose, 3.6 μM lactate and 1.7 μM hypoxanthine, when the MXCeO2 and their respective enzymes were used. The MXCeO2 was successfully incorporated into a wearable fabric demonstrating high sensitivity for lactate measurements in sweat. The unique combination of MXenes with CeO2 offers excellent conductivity, catalytic efficiency and enhanced enzyme loading, demonstrating potential of the MXCeO2 as a catalytically active material to boost efficiency of oxidase enzyme reactions. This design can be used as a general platform for increasing the sensitivity of enzyme based biosensors and advance the development of electrochemical biosensors for a variety of applications. 
    more » « less
  5. Wearable sweat biosensors offer compelling opportunities for improved personal health monitoring and non-invasive measurements of key biomarkers. Inexpensive device fabrication methods are necessary for scalable manufacturing of portable, disposable, and flexible sweat sensors. Furthermore, real-time sweat assessment must be analyzed to validate measurement reliability at various sweating rates. Here, we demonstrate a “smart bandage” microfluidic platform for cortisol detection and continuous glucose monitoring integrated with a synthetic skin. The low-cost, laser-cut microfluidic device is composed of an adhesive-based microchannel and solution-processed electrochemical sensors fabricated from inkjet-printed graphene and silver solutions. An antibody-derived cortisol sensor achieved a limit of detection of 10 pM and included a low-voltage electrowetting valve, validating the microfluidic sensor design under typical physiological conditions. To understand effects of perspiration rate on sensor performance, a synthetic skin was developed using soft lithography to mimic human sweat pores and sweating rates. The enzymatic glucose sensor exhibited a range of 0.2 to 1.0 mM, a limit of detection of 10 μM, and reproducible response curves at flow rates of 2.0 μL min −1 and higher when integrated with the synthetic skin, validating its relevance for human health monitoring. These results demonstrate the potential of using printed microfluidic sweat sensors as a low-cost, real-time, multi-diagnostic device for human health monitoring. 
    more » « less