skip to main content


Title: Using δ18O and δ2H to Detect Hydraulic Connection Between a Sinkhole Lake and a First‐Magnitude Spring
Abstract

Oxygen and hydrogen isotopes were used in this study to detect a hydraulic connection between a sinkhole lake and a karst spring. In karst areas, surface water that flows to a lake can drain through sinkholes in the lakebed to the underlying aquifer, and then flows in karst conduits and through aquifer matrix. At the study site located in northwest Florida, USA, Lake Miccosukee immediately drains into two sinkholes. Results from a dye tracing experiment indicate that lake water discharges at Natural Bridge Spring, a first‐magnitude spring 32 km downgradient from the lake. By collecting weekly water samples from the lake, the spring, and a groundwater well 10 m away from the lake during the dry period between October 2019 and January 2020, it was found that, when rainfall effects on isotopic signature in spring water are removed, increased isotope ratios of spring water can be explained by mixing of heavy‐isotope‐enriched lake water into groundwater, indicating hydraulic connection between the lake and the spring. Such a detection of hydraulic connection at the scale of tens of kilometers and for a first‐magnitude spring has not been previously reported in the literature. Based on the isotope ratio data, it was estimated that, during the study period, about 8.5% the spring discharge was the lake water that drained into the lake sinkholes.

 
more » « less
Award ID(s):
1828827
NSF-PAR ID:
10244949
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Groundwater
Volume:
59
Issue:
6
ISSN:
0017-467X
Page Range / eLocation ID:
p. 856-865
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In mountainous river basins of the Pacific Northwest, climate models predict that winter warming will result in increased precipitation falling as rain and decreased snowpack. A detailed understanding of the spatial and temporal dynamics of water sources across river networks will help illuminate climate change impacts on river flow regimes. Because the stable isotopic composition of precipitation varies geographically, variation in surface water isotope ratios indicates the volume‐weighted integration of upstream source water. We measured the stable isotope ratios of surface water samples collected in the Snoqualmie River basin in western Washington over June and September 2017 and the 2018 water year. We used ordinary least squares regression and geostatistical Spatial Stream Network models to relate surface water isotope ratios to mean watershed elevation (MWE) across seasons. Geologic and discharge data was integrated with water isotopes to create a conceptual model of streamflow generation for the Snoqualmie River. We found that surface water stable isotope ratios were lowest in the spring and highest in the dry, Mediterranean summer, but related strongly to MWE throughout the year. Low isotope ratios in spring reflect the input of snowmelt into high elevation tributaries. High summer isotope ratios suggest that groundwater is sourced from low elevation areas and recharged by winter precipitation. Overall, our results suggest that baseflow in the Snoqualmie River may be relatively resilient to predicted warming and subsequent changes to snowpack in the Pacific Northwest.

     
    more » « less
  2. Abstract

    The high primary porosity and permeability of eogenetic karst aquifers permit water recharged through secondary dissolution features to be temporarily stored in aquifer matrix porosity. The recharged water contains elevated dissolved organic carbon (DOC) concentrations that, when oxidized, enhance limestone dissolution and impact carbon cycling. We evaluate the relationship between DOC oxidation and limestone dissolution using observations at a stream sink‐rise system and reversing spring in the Floridan aquifer, north‐central Florida, USA, where subsurface residence times of recharged water are days and months, respectively. We estimate water chemical compositions during surface water‐groundwater interactions at these two systems with mixing models of surface water and groundwater compositions and compare them with measured DOC, dissolved inorganic carbon (DIC), Ca2+and dissolved organic nitrogen (DON) concentrations. Differences between measured and modelled concentrations represent net changes that can be attributed to calcite dissolution and redox reactions, including DOC oxidation. DOC losses and Ca2+gains exhibit significant (p < 0.01) inverse linear correlations at both the reversing spring (slope = −0.9, r2 = 0.99) and the sink‐rise system (slope = −0.4, r2 = 0.72). DOC oxidation in both systems was associated with decreases in the molar C:N ratio (DOC:DON). Significant (p < 0.01) positive linear correlations between increases in Ca2+and DIC concentrations after correcting for DIC derived from calcite dissolution occurred at both the reversing spring (slope = 1.3, r2 = 0.99) and the sink‐rise system (slope = 1.61, r2 = 0.75). Greater deviations from the expected slope of −1 or +1 at the sink‐rise system than at the reversing spring indicate DOC oxidation contributes less dissolution at the sink‐rise system than at the reversing spring, likely from shorter storage in the subsurface. A portion of the deviation from expected slope values can be explained by the dissolution of Mg‐rich carbonate or dolomite rather than pure calcite dissolution. Despite this, slope values reflect kinetic effects controlling incomplete consumption of carbonic acid during dissolution reactions.

     
    more » « less
  3. Abstract

    Groundwater discharge transports dissolved constituents to the ocean, affecting coastal carbon budgets and water quality. However, the magnitude and mechanisms of groundwater exchange along rapidly transitioning Arctic coastlines are largely unknown due to limited observations. Here, using first-of-its-kind coastal Arctic groundwater timeseries data, we evaluate the magnitude and drivers of groundwater discharge to Alaska’s Beaufort Sea coast. Darcy flux calculations reveal temporally variable groundwater fluxes, ranging from −6.5 cm d−1(recharge) to 14.1 cm d−1(discharge), with fluctuations in groundwater discharge or aquifer recharge over diurnal and multiday timescales during the open-water season. The average flux during the monitoring period of 4.9 cm d−1is in line with previous estimates, but the maximum discharge exceeds previous estimates by over an order-of-magnitude. While the diurnal fluctuations are small due to the microtidal conditions, multiday variability is large and drives sustained periods of aquifer recharge and groundwater discharge. Results show that wind-driven lagoon water level changes are the dominant mechanism of fluctuations in land–sea hydraulic head gradients and, in turn, groundwater discharge. Given the microtidal conditions, low topographic relief, and limited rainfall along the Beaufort Sea coast, we identify wind as an important forcing mechanism of coastal groundwater discharge and aquifer recharge with implications for nearshore biogeochemistry. This study provides insights into groundwater flux dynamics along this coastline over time and highlights an oft overlooked discharge and circulation mechanism with implications towards refining solute export estimates to coastal Arctic waters.

     
    more » « less
  4. Abstract

    The external drivers and internal controls of groundwater flow in the thawed “active layer” above permafrost are poorly constrained because they are dynamic and spatially variable. Understanding these controls is critical because groundwater can supply solutes such as dissolved organic matter to surface water bodies. We calculated steady‐state three‐dimensional suprapermafrost groundwater flow through the active layer using measurements of aquifer geometry, saturated thickness, and hydraulic properties collected from two major landscape types over time within a first‐order Arctic watershed. The depth position and thickness of the saturated zone is the dominant control of groundwater flow variability between sites and during different times of year. The effect of water table depth on groundwater flow dwarfs the effect of thaw depth. In landscapes with low land‐surface slopes (2–4%), a combination of higher water tables and thicker, permeable peat deposits cause relatively constant groundwater flows between the early and late thawed seasons. Landscapes with larger land‐surface slopes (4–10%) have both deeper water tables and thinner peat deposits; here the commonly observed permeability decrease with depth is more pronounced than in flatter areas, and groundwater flows decrease significantly between early and late summer as the water table drops. Groundwater flows are also affected by microtopographic features that retain groundwater that could otherwise be released as the active layer deepens. The dominant sources of groundwater, and thus dissolved organic matter, are likely wet, flatter regions with thick organic layers. This finding informs fluid flow and solute transport dynamics for the present and future Arctic.

     
    more » « less
  5. Abstract

    Dynamic hydrologic exchange flows in river beds and banks are important for many ecosystem functions throughout river corridors. Here we test whether the exchanges and the associated mixing between a flooding river and groundwater within the river’s bank can be effectively traced by Radon‐222 (222Rn), a naturally occurring, inert, radiogenic, and radioactive gas that can be analyzed and monitored in situ. The assessment was done by simulation of groundwater flow and reactive transport of222Rn in the bank following a single, relatively rapid (hours long) flood wave and auxiliary field observations of222Rn, temperature and total dissolved solids (a surrogate for any ionic conservative tracer). Results illustrate that222Rn is more effective than temperature and total dissolved solids in tracing dynamic hyporheic exchange.222Rn variations in space and time are larger than the analytical uncertainty of common measurement methods. The individual effects of aquifer hydraulic conductivity, dispersivity, river water222Rn concentration, and bank topography were analyzed through sensitivity analysis. Larger hydraulic conductivity and dispersivity, lower222Rn concentration in river water relative to groundwater, and gentler bank slopes resulted in a more prominent and traceable222Rn signal. The transport and residence time of exchanged water may be estimated and interpreted using reactive transport models such as those implemented here. However, such application is sensitive to fluctuations in river water222Rn, requiring it to be well characterized. The assessment provides guidance for using222Rn as a tracer for groundwater and surface water interactions in dynamic settings.

     
    more » « less