Reaction of {LiC6H2−2,4,6‐Cyp3⋅Et2O}2(Cyp=cyclopentyl) (
- Award ID(s):
- 1565501
- Publication Date:
- NSF-PAR ID:
- 10411900
- Journal Name:
- Chemical Communications
- Volume:
- 58
- Issue:
- 71
- Page Range or eLocation-ID:
- 9910 to 9913
- ISSN:
- 1359-7345
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract 1 ) of the new dispersion energy donor (DED) ligand, 2,4,6‐triscyclopentylphenyl with SnCl2afforded a mixture of the distannene {Sn(C6H2−2,4,6‐Cyp3)2}2(2 ), and the cyclotristannane {Sn(C6H2−2,4,6‐Cyp3)2}3(3 ).2 is favored in solution at higher temperature (345 K or above) whereas3 is preferred near 298 K. Van't Hoff analysis revealed the3 to2 conversion has a ΔH =33.36 kcal mol−1and ΔS =0.102 kcal mol−1 K−1, which gives a ΔG 300 K=+2.86 kcal mol−1, showing that the conversion of3 to2 is an endergonic process. Computational studies show that DED stabilization in3 is −28.5 kcal mol−1per {Sn(C6H2−2,4,6‐Cyp3)2unit, which exceeds the DED energy in2 of −16.3 kcal mol−1per unit. The data clearly show that dispersion interactions are the main arbiter of the3 to2 equilibrium. Both2 and3 possess large dispersion stabilization energies which suppress monomer dissociation (supported by EDA results). -
Abstract Reaction of {LiC6H2−2,4,6‐Cyp3⋅Et2O}2(Cyp=cyclopentyl) (
1 ) of the new dispersion energy donor (DED) ligand, 2,4,6‐triscyclopentylphenyl with SnCl2afforded a mixture of the distannene {Sn(C6H2−2,4,6‐Cyp3)2}2(2 ), and the cyclotristannane {Sn(C6H2−2,4,6‐Cyp3)2}3(3 ).2 is favored in solution at higher temperature (345 K or above) whereas3 is preferred near 298 K. Van't Hoff analysis revealed the3 to2 conversion has a ΔH =33.36 kcal mol−1and ΔS =0.102 kcal mol−1 K−1, which gives a ΔG 300 K=+2.86 kcal mol−1, showing that the conversion of3 to2 is an endergonic process. Computational studies show that DED stabilization in3 is −28.5 kcal mol−1per {Sn(C6H2−2,4,6‐Cyp3)2unit, which exceeds the DED energy in2 of −16.3 kcal mol−1per unit. The data clearly show that dispersion interactions are the main arbiter of the3 to2 equilibrium. Both2 and3 possess large dispersion stabilization energies which suppress monomer dissociation (supported by EDA results). -
A flexible polydentate bis(amidine) ligand LH 2 , LH 2 = {CH 2 NH( t Bu)CN-2-(6-MePy)} 2 , operates as a molecular lock for various coinage metal fragments and forms the dinuclear complexes [LH 2 (MCl) 2 ], M = Cu (1), Au (2), the coordination polymer [{(LH 2 ) 2 (py) 2 (AgCl) 3 }(py) 3 ] n (3), and the dimesityl-digold complex [LH 2 (AuMes) 2 ] (4) by formal insertion of MR fragments (M = Cu, Ag, Au; R = Cl, Mes) into the N–H⋯N hydrogen bonds of LH 2 in yields of 43–95%. Complexes 1, 2, and 4 adopt C 2 -symmetrical structures in the solid state featuring two interconnected 11-membered rings that are locked by two intramolecular N–H⋯R–M hydrogen bonds. QTAIM analyses of the computational geometry-optimized structures 1a, 2a, and 4a reveal 13, 11, and 22 additional bond critical points, respectively, all of which are related to weak intramolecular attractive interactions, predominantly representing dispersion forces, contributing to the conformational stabilization of the C 2 -symmetrical stereoisomers in the solid state. Variable-temperature 1 H NMR spectroscopy in combination with DFT calculations indicate a dynamic conformational interconversion between two C 2 -symmetrical ground state structures in solutionmore »
-
The diphosphine complexes cis - or trans -PtCl 2 (P((CH 2 ) n ) 3 P) ( n = b/12, c/14, d/16, e/18) are demetalated by MCX nucleophiles to give the title compounds (P((CH 2 ) n ) 3 )P (3b–e, 91–71%). These “empty cages” react with PdCl 2 or PtCl 2 sources to afford trans -MCl 2 (P((CH 2 ) n ) 3 P). Low temperature 31 P NMR spectra of 3b and c show two rapidly equilibrating species (3b, 86 : 14; 3c, 97 : 3), assigned based upon computational data to in , in (major) and out , out isomers. These interconvert by homeomorphic isomerizations, akin to turning articles of clothing inside out (3b/c: Δ H ‡ 7.3/8.2 kcal mol −1 , Δ S ‡ −19.4/−11.8 eu, minor to major). At 150 °C, 3b, c, e epimerize to (60–51) : (40–49) mixtures of ( in , in / out , out ) : in , out isomers, which are separated via the bis(borane) adducts 3b, c, e·2BH 3 . The configurational stabilities of in , out -3b, c, e preclude phosphorus inversion in the interconversion of in , in and out , out isomers. Low temperature 31 P NMR spectra of in , outmore »
-
Heterogeneous phase astrochemistry plays an important role in the synthesis of complex organic matter (COM) as found on comets and rocky body surfaces like asteroids, planetoids, moons and planets. The proposed catalytic model is based on two assumptions: (a) siliceous rocks in both crystalline or amorphous states show surface-exposed defective centers such as siloxyl (Si-O•) radicals; (b) the second phase is represented by gas phase CO molecules, an abundant C 1 building block found in space. By means of quantum chemistry; (DFT, PW6B95/def2-TZVPP); the surface of a siliceous rock in presence of CO is modeled by a simple POSS (polyhedral silsesquioxane) where a siloxyl (Si-O•) radical is present. Four CO molecules have been consecutively added to the Si-O• radical and to the nascent polymeric CO (pCO) chain. The first CO insertion shows no activation free energy with ΔG 200 K = −21.7 kcal/mol forming the SiO-CO• radical. The second and third CO insertions show Δ G 200 K ‡ ≤ 10.5 kcal/mol. Ring closure of the SiO-CO-CO• (oxalic anhydride) moiety as well as of the SiO-CO-CO-CO• system (di-cheto form of oxetane) are thermodynamically disfavored. The last CO insertion shows no free energy of activation resulting in the stable five membermore »