skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of Co‐Occurrence Statistics in Developing Semantic Knowledge
Abstract The organization of our knowledge about the world into an interconnected network of concepts linked by relations profoundly impacts many facets of cognition, including attention, memory retrieval, reasoning, and learning. It is therefore crucial to understand how organized semantic representations are acquired. The present experiment investigated the contributions of readily observable environmental statistical regularities to semantic organization in childhood. Specifically, we investigated whether co‐occurrence regularities with which entities or their labels more reliably occur together than with others (a) contribute to relations between concepts independently and (b) contribute to relations between concepts belonging to the same taxonomic category. Using child‐directed speech corpora to estimate reliable co‐occurrences between labels for familiar items, we constructed triads consisting of a target, a related distractor, and an unrelated distractor in which targets and related distractors consistently co‐occurred (e.g., sock‐foot), belonged to the same taxonomic category (e.g., sock‐coat), or both (e.g., sock‐shoe). We used an implicit, eye‐gaze measure of relations between concepts based on the degree to which children (N = 72, age 4–7 years) looked at related versus unrelated distractors when asked to look for a target. The results indicated that co‐occurrence both independently contributes to relations between concepts and contributes to relations between concepts belonging to the same taxonomic category. These findings suggest that sensitivity to the regularity with which different entities co‐occur in children's environments shapes the organization of semantic knowledge during development. Implications for theoretical accounts and empirical investigations of semantic organization are discussed.  more » « less
Award ID(s):
1918259
PAR ID:
10245442
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Cognitive Science
Volume:
44
Issue:
9
ISSN:
0364-0213
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Naming a picture is more difficult in the context of a taxonomically-related picture. Disagreement exists on whether non-taxonomic relations, e.g., associations, have similar or different effects on picture naming. Past work has reported facilitation, interference and null results but with inconsistent methodologies. We paired the same target word (e.g., cow) with unrelated (pen), taxonomically-related (bear), and associatively-related (milk) items in different blocks, as participants repeatedly named one of the two pictures in randomized order. Significant interference was uncovered for the same target item in the taxonomic vs. unrelated and associative blocks. There was no robust evidence of interference in the associative blocks. If anything, evidence suggested that associatively-related items marginally facilitated production. This finding suggests that taxonomic and associative relations have different effects on picture naming and has implications for theoretical models of lexical selection and, more generally, for the computations involved in mapping semantic features to lexical items. 
    more » « less
  2. Research on selective attention has largely focused on the enhancement of behaviorally important information, with less focus on the suppression of distracting information. Enhancement and suppression can operate through a push-pull relationship attributable to competitive interactions among neural populations. There has been considerable debate, however, regarding (1) whether suppression can be voluntarily deployed, independent of enhancement, and (2) whether voluntary deployment of suppression is associated with neural processes occurring prior to the distractor onset. Here, we investigated the interplay between pre- and post-distractor neural processes, while male and female human subjects performed a visual search task with a cue that indicated the location of an upcoming distractor. We utilized two established EEG markers of suppression: the distractor positivity (PD) and alpha power (~815 Hz). The PDa component of event-related potentialshas been linked with successful distractor suppression, and increased alpha power has been linked with attenuated sensory processing. Cueing the location of an upcoming distractor speeded responses and led to an earlier PD, consistent with earlier suppression due to strategic use of a spatial cue. In comparison, higher predistractor alpha power contralateral to distractors led to a later PD, consistent with later suppression. Lower alpha power contralateral to distractors instead led to distractor-related attentional capture. Lateralization of alpha power was not linked to the spatial cue. This observation, combined with differences in the timing of suppressionas indexed by earlier and later PDcomponentsdemonstrates that cue-related, voluntary suppression can occur separate from alpha-related gating of sensory processing. 
    more » « less
  3. Labels may play a role in the formation and acquisition of ob- ject categories. We investigated this using a free-categorization task, manipulating the presence or absence of labels and whether labels were random or reinforced one of two alterna- tive categorization cues (taxonomic or thematic relationships). When labels were absent, participants used thematic and taxo- nomic cues equally to categorize stimuli. When present, labels were used as the primary cue for category formation, with ran- dom labels leading participants to attend less to taxonomic and thematic relations between stimuli. When labels redundantly reinforced either thematic or taxonomic cues, the use of the cue in question was boosted along with the use of labels as a cue for categorization. Most interestingly, in spite of pre- viously observed associations between labels and taxonomic grouping, labels did not preferentially boost the use of either taxonomic or thematic cues in comparison with the other. 
    more » « less
  4. We study the problem of representation learning for multiple types of entities in a co-ordered network where order relations exist among entities of the same type, and association relations exist across entities of different types. The key challenge in learning co-ordered network embedding is to preserve order relations among entities of the same type while leveraging on the general consistency in order relations between different entity types. In this paper, we propose an embedding model, CO2Vec, that addresses this challenge using mutually reinforced order dependencies. Specifically, CO2Vec explores indirect order dependencies as supplementary evidence to enhance order representation learning across different types of entities. We conduct extensive experiments on both synthetic and real world datasets to demonstrate the robustness and effectiveness of CO2Vec against several strong baselines in link prediction task. We also design a comprehensive evaluation framework to study the performance of CO2Vec under different settings. In particular, our results show the robustness of CO2Vec with the removal of order relations from the original networks. 
    more » « less
  5. Human reasoning goes beyond knowledge about individual entities, extending to inferences based on relations between entities. Here we focus on the use of relations in verbal analogical mapping, sketching a general approach based on assessing similarity between patterns of semantic relations between words. This approach combines research in artificial intelligence with work in psychology and cognitive science, with the aim of minimizing hand coding of text inputs for reasoning tasks. The computational framework takes as inputs vector representations of individual word meanings, coupled with semantic representations of the relations between words, and uses these inputs to form semantic-relation networks for individual analogues. Analogical mapping is operationalized as graph matching under cognitive and computational constraints. The approach highlights the central role of semantics in analogical mapping. 
    more » « less