skip to main content


Title: Implementing Professional Skills Training in STEM: A Review of the Literature
Background: Project management and other professional skill training is often lacking in graduate student education, typically as a result of limited resources, lack of faculty buy-in, and narrow focus on thesis research. To address this need and with support from NSF, we are developing the Graduates for Advancing Professional Skills (GAPS) program at Iowa State University. To aid the initial development of this program, we conducted a literature review to understand the current context of the development and implementation of professional skills in higher education curricula, with specific interest in STEM fields. Purpose: The purpose of our study was to identify best practices related to implementing professional development skills into an academic curriculum. The goal was to utilize this information in the development, planning, implementation, and assessment of our GAPS program. Design: We engaged in a systematic literature review. We focused on the curricular and pedagogical approaches to implementing these skills, results of the initiatives, and methodologies used to assess their effectiveness. Results: Our literature review uncovered the “messiness” of teaching and learning of skills such as project management. There is often not one approach or definition of project management – it may change based on scope of project and context. Successful implementation requires adaptability, mentorship, problem solving, creativity, and communication. Additionally, project management has been referred to as a “threshold concept” and requires a certain level of intuition that cannot necessarily be gained through traditional classroom education. Conclusions: There appears to be an agreement on the importance of implementing project management skills at the postsecondary level. Our work illustrates the difficulty associated with undertaking this endeavor and provides guidance on approaches that can make these initiatives more beneficial. Although this literature was conducted to aid in the planning for our specific project, the synthesis of the extant works can inform other faculty and industry leaders who are interested in teaching and applying project management techniques in their courses or companies.  more » « less
Award ID(s):
1954946
NSF-PAR ID:
10245786
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ASEE North Midwest Section Annual Conference 2020
Page Range / eLocation ID:
Paper ID #32159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The AMPLIFY project, funded through the NSF HSI Program, seeks to amplify the educational change leadership of Engineering Instructional Faculty (EIF) working at Hispanic Serving Institutions (HSIs). HSIs are public or private institutions of higher education enrolling over 25% full-time undergraduate Hispanic or Latinx-identifying students [1]. Many HSIs are exemplars of developing culturally responsive learning environments and supporting the persistence and access of Latinx engineering students, as well as students who identify as members of other marginalized populations [2]. Our interest in the EIF population at HSIs arises from the growing body of literature indicating that these faculty play a central role in educational change through targeted initiatives, such as student-centered support programs and the use of inclusive curricula that connect to their students’ cultural identities [3]–[7]. Our research focuses on exploring methods for amplifying the engineering educational change efforts at HSIs by 1) making visible the experiences of engineering instructional faculty at HSIs and 2) designing, implementing, and evaluating a leadership development model for engineering instructional faculty, thereby 3) equipping and supporting these faculty as they lead educational change efforts. To achieve these goals, our project team, comprising educational researchers, engineering instructional faculty, instructional designers, and graduate students from three HSIs (two majority-minority and one emerging HSI), seeks to address the following research questions: 1) What factors impact the self-efficacy and agency of EIF at HSIs to engage in educational change initiatives that encourage culturally responsive, evidence-based teaching within their classrooms, institutions, or beyond? 2) What are the necessary competencies for EIF to be leaders of this sort of educational change? 3) What individual, institutional, and professional development program features support the educational change leadership development of EIF at HSIs? 4) How does engagement in leadership development programming impact EIF educational leadership self-efficacy and agency toward developing and using culturally responsive and evidence-based approaches at HSIs? This multi-year project uses various qualitative, quantitative, and participatory research methods embedded in a series of action research cycles to provide a richer understanding of the successes and needs of EIF at HSIs [8]. The subsequent design and implementation of the AMPLIFY Institute will make visible the features and content of instructional faculty development programs that promote educational innovation at HSIs and foster a deeper understanding of the framework's impact on faculty innovation and leadership. 
    more » « less
  2. Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches. 
    more » « less
  3. To better support engineering students and to create an inclusive and welcoming educational context, it is necessary to reimagine instructional methods and approaches. In contrast to deficit educational models that focus on perceptions of what students lack, asset-based practices focus on how students’ lived experiences can be used to enrich and strengthen their educational experiences. There is a need to support faculty in adopting existing techniques or developing new techniques in undergraduate courses, as most existing literature related to asset-based practices is focused on K-12 settings. Engineering design courses provide an ideal context for asset-based practices because the design process requires a diverse set of knowledge, experiences, and skills. Guided by self-determination theory, an understanding of implicit bias and stereotype threat, and the large existing body of research on asset-based pedagogy, we seek to support engineering student outcomes by empowering faculty with tools and strategies to incorporate asset-based practices in their courses. We are engaged in a three-year project focused on assessing the impact of asset-based practices in engineering design courses a large, public, land-grant, Hispanic-serving institution in the southwestern United States, funded by the NSF IUSE:EDU program. Here, we will summarize the design and results from our professional development for faculty, including theoretical frameworks and evidence guiding our work. We share content from our professional development, summarizing learning objectives, presentation content, and activities. Additionally, we present comments shared by instructors related to our professional development, including common barriers to implementing educational innovations in their courses. Our work will provide insights to practitioners interested in promoting inclusive classroom practices in engineering education and researchers who are translating research to practice, especially through professional development. 
    more » « less
  4. Abstract Background

    Over the past decade, there has been a shift in science, technology, engineering and math education, especially in engineering, towards a competency‐based pedagogy. Competency‐based learning (CBL) is an outcome‐based, student‐centered form of instruction where students progress to more advanced work upon mastering the necessary prerequisite content and skills. Many articles have been published on the implementation of CBL in engineering higher education; however, the literature lacks a systematic review that summarizes prior work to inform both future research and practice.

    Purpose

    The purpose of this review is to integrate previous literature as well as identify gaps in competency‐based engineering higher education research. It summarizes the different approaches for implementing CBL, the effects of the pedagogy on student outcomes, tools to enhance its effectiveness, and assessment strategies. In addition, suggestions and recommendations for future research are provided.

    Method

    Engineering education articles were obtained from several EBSCO educational databases. The search was limited to articles published from 2005‐2015, and inclusion criteria consisted of peer‐reviewed journal articles that address the use of CBL in engineering higher education. Articles were then classified into several categories, summarized, and evaluated.

    Conclusions

    Theoretical and applied perspectives are provided that address both the theoretical basis for the effectiveness of CBL and practical aspects of implementing successful CBL instruction in engineering education. There are gaps in the literature regarding how CBL programs should be structured and assessed. Future research directions include empirical quantitative evaluation of CBL's pedagogical effectiveness and the use of CBL for teaching professional skills.

     
    more » « less
  5. We STEM educators often hear that so many of our students fail because they are not college ready. But interventions at various levels, despite the hard work of implementation, have not resulted in dramatic improvements. What if, instead, the problem is that the institutional system – including instructional approaches and policies – is not student ready? The goal of our NSF supported project, called “Eco-STEM,” is to establish a healthy STEM educational ecosystem that allows all individuals within the ecosystem to thrive. The context for our work on STEM educational ecosystems is a Very High Hispanic Enrolling Hispanic-Serving Institution (HSI) at California State University, Los Angeles, where the majority of our students are also low-income and first-generation college students. Guided by an ecosystem paradigm, the project aims to: 1) create a supportive and culturally responsive learning/working environment for both students and faculty; 2) make teaching and learning rewarding and fulfilling experiences; and 3) emphasize the assets of our community to enhance motivation, excellence, and success. Currently, many STEM educators have a mental model of the education system as a pipeline or pathway, and this factory-like model requires standard inputs, expecting students to come prepared with certain knowledge and skills [4]. When the educational system is viewed as a factory assembly line (as shown in Figure 1), interventions are focused on fixing the inputs by trying to increase students’ preparedness, which contributes to a prevailing deficit-focused mindset. This not only hinders student growth but also makes educational institutions less inclusive and teaching less rewarding for faculty. Increasingly, equity-minded educators and researchers employing the framework of community cultural wealth suggest that we need an asset-based mindset if we are to help all students achieve success in STEM. Research on ecosystem models offers a new way of thinking. In contrast to pipelines or pathways, which focus on student outcomes, an ecosystem model is centered on the learning environment, communities, and the experiences that diverse students, faculty, and staff have in the system as active agents. The Eco-STEM project proposes to: 1) shift the mental models of STEM faculty from factory- based to ecosystem-based so that they will intentionally establish healthy classroom ecosystems that facilitate learning for all students regardless of their backgrounds; 2) change the mental models and develop the capacity of department chairs and program coordinators so they can lead the cultural changes needed to create a healthy ecosystem at the department level; and 3) revise the teaching evaluation system to promote faculty development and enhance the student experience, which will help to create a healthy ecosystem at the institution. One fundamental aspect of this project is the Eco-STEM Faculty Fellows Community of Practice (CoP), which is designed to help foster these changes. As a work-in-progress paper, this paper presents the design and structure of the Eco-STEM Faculty Fellows CoP and seeks input from the faculty development community on our approach to fostering a healthy educational ecosystem for the majority marginalized student population we serve. 
    more » « less