skip to main content

Title: Non-linear dynamical tides in white dwarf binaries
ABSTRACT Compact white dwarf (WD) binaries are important sources for space-based gravitational-wave (GW) observatories, and an increasing number of them are being identified by surveys like Extremely Low Mass (ELM) and Zwicky Transient Facility (ZTF). We study the effects of non-linear dynamical tides in such binaries. We focus on the global three-mode parametric instability and show that it has a much lower threshold energy than the local wave-breaking condition studied previously. By integrating networks of coupled modes, we calculate the tidal dissipation rate as a function of orbital period. We construct phenomenological models that match these numerical results and use them to evaluate the spin and luminosity evolution of a WD binary. While in linear theory the WD’s spin frequency can lock to the orbital frequency, we find that such a lock cannot be maintained when non-linear effects are taken into account. Instead, as the orbit decays, the spin and orbit go in and out of synchronization. Each time they go out of synchronization, there is a brief but significant dip in the tidal heating rate. While most WDs in compact binaries should have luminosities that are similar to previous traveling-wave estimates, a few per cent should be about 10 times dimmer more » because they reside in heating rate dips. This offers a potential explanation for the low luminosity of the CO WD in J0651. Lastly, we consider the impact of tides on the GW signal and show that the Laser Interferometer Space Antenna (LISA) and TianGO can constrain the WD’s moment of inertia to better than $1{{\ \rm per\ cent}}$ for centi-Hz systems. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
5482 to 5502
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Massive black hole (MBH) binary inspiral time-scales are uncertain, and their spins are even more poorly constrained. Spin misalignment introduces asymmetry in the gravitational radiation, which imparts a recoil kick to the merged MBH. Understanding how MBH binary spins evolve is crucial for determining their recoil velocities, their gravitational wave (GW) waveforms detectable with Laser Interferometer Space Antenna, and their retention rate in galaxies. Here, we introduce a sub-resolution model for gas- and gravitational wave (GW)-driven MBH binary spin evolution using accreting MBHs from the Illustris cosmological hydrodynamic simulations. We also model binary inspiral via dynamical friction, stellar scattering, viscous gas drag, and GW emission. Our model assumes that the circumbinary disc always removes angular momentum from the binary. It also assumes differential accretion, which causes greater alignment of the secondary MBH spin in unequal-mass mergers. We find that 47 per cent of the MBHs in our population merge by z = 0. Of these, 19 per cent have misaligned primaries and 10 per cent have misaligned secondaries at the time of merger in our fiducial model with initial eccentricity of 0.6 and accretion rates from Illustris. The MBH misalignment fraction depends strongly on the accretion disc parameters, however. Reducing accretion rates by a factor ofmore »100, in a thicker disc, yields 79 and 42 per cent misalignment for primaries and secondaries, respectively. Even in the more conservative fiducial model, more than 12 per cent of binaries experience recoils of >500 km s−1, which could displace them at least temporarily from galactic nuclei. We additionally find that a significant number of systems experience strong precession.« less
  2. ABSTRACT Mergers of binaries comprising compact objects can give rise to explosive transient events, heralding the birth of exotic objects that cannot be formed through single-star evolution. Using a large number of direct N-body simulations, we explore the possibility that a white dwarf (WD) is dynamically driven to tidal disruption by a stellar-mass black hole (BH) as a consequence of the joint effects of gravitational wave (GW) emission and Lidov–Kozai oscillations imposed by the tidal field of an outer tertiary companion orbiting the inner BH–WD binary. We explore the sensitivity of our results to the distributions of natal kick velocities imparted to the BH and WD upon formation, adiabatic mass loss, semimajor axes and eccentricities of the triples, and stellar-mass ratios. We find rates of WD–tidal disruption events (TDEs) in the range 1.2 × 10−3 − 1.4 Gpc−3 yr−1 for z ≤ 0.1, rarer than stellar TDEs in triples by a factor of ∼3–30. The uncertainty in the TDE rates may be greatly reduced in the future using GW observations of Galactic binaries and triples with LISA. WD–TDEs may give rise to high-energy X-ray or gamma-ray transients of duration similar to long gamma-ray bursts but lacking the signatures of a core-collapse supernova,more »while being accompanied by a supernova-like optical transient that lasts for only days. WD–BH and WD–NS binaries will also emit GWs in the LISA band before the TDE. The discovery and identification of triple-induced WD–TDE events by future time domain surveys and/or GWs could enable the study of the demographics of BHs in nearby galaxies.« less
  3. ABSTRACT When a star passes close to a supermassive black hole (BH), the BH’s tidal forces rip it apart into a thin stream, leading to a tidal disruption event (TDE). In this work, we study the post-disruption phase of TDEs in general relativistic hydrodynamics (GRHD) using our GPU-accelerated code h-amr. We carry out the first grid-based simulation of a deep-penetration TDE (β = 7) with realistic system parameters: a black hole-to-star mass ratio of 106, a parabolic stellar trajectory, and a non-zero BH spin. We also carry out a simulation of a tilted TDE whose stellar orbit is inclined relative to the BH midplane. We show that for our aligned TDE, an accretion disc forms due to the dissipation of orbital energy with ∼20 per cent of the infalling material reaching the BH. The dissipation is initially dominated by violent self-intersections and later by stream–disc interactions near the pericentre. The self-intersections completely disrupt the incoming stream, resulting in five distinct self-intersection events separated by approximately 12 h and a flaring in the accretion rate. We also find that the disc is eccentric with mean eccentricity e ≈ 0.88. For our tilted TDE, we find only partial self-intersections due to nodal precession near pericentre. Althoughmore »these partial intersections eject gas out of the orbital plane, an accretion disc still forms with a similar accreted fraction of the material to the aligned case. These results have important implications for disc formation in realistic tidal disruptions. For instance, the periodicity in accretion rate induced by the complete stream disruption may explain the flaring events from Swift J1644+57.« less
  4. ABSTRACT We examine massive black hole (MBH) mergers and their associated gravitational wave signals from the large-volume cosmological simulation Astrid . Astrid includes galaxy formation and black hole models recently updated with an MBH seed population between 3 × 104h−1M⊙ and 3 × 105h−1M⊙ and a sub-grid dynamical friction (DF) model to follow the MBH dynamics down to 1.5 ckpc h−1. We calculate the initial eccentricities of MBH orbits directly from the simulation at kpc-scales, and find orbital eccentricities above 0.7 for most MBH pairs before the numerical merger. After approximating unresolved evolution on scales below ${\sim 200\, \text{pc}}$, we find that the in-simulation DF on large scales accounts for more than half of the total orbital decay time ($\sim 500\, \text{Myr}$) due to DF. The binary hardening time is an order of magnitude longer than the DF time, especially for the seed-mass binaries (MBH < 2Mseed). As a result, only $\lesssim 20{{\rm per \,cent}}$ of seed MBH pairs merge at z > 3 after considering both unresolved DF evolution and binary hardening. These z > 3 seed-mass mergers are hosted in a biased population of galaxies with the highest stellar masses of $\gt 10^9\, {\rm M}_\odot$. With the higher initial eccentricity prediction from Astrid , we estimate anmore »expected merger rate of 0.3−0.7 per year from the z > 3 MBH population. This is a factor of ∼7 higher than the prediction using the circular orbit assumption. The Laser Interferometer Space Antenna events are expected at a similar rate, and comprise $\gtrsim 60\,{\rm{per\,cent}}$ seed-seed mergers, $\sim 30\,{\rm{per\,cent}}$ involving only one seed-mass MBH, and $\sim 10\,{\rm{per\,cent}}$ mergers of non-seed MBHs.« less
  5. ABSTRACT The hyper-velocity star S5-HVS1, ejected 5 Myr ago from the Galactic Centre at 1800 km s−1, was most likely produced by tidal break-up of a tight binary by the supermassive black hole SgrA*. Taking a Monte Carlo approach, we show that the former companion of S5-HVS1 was likely a main-sequence star between 1.2 and 6 M⊙ and was captured into a highly eccentric orbit with pericentre distance in the range of 1–10 au and semimajor axis about 103 au. We then explore the fate of the captured star. We find that the heat deposited by tidally excited stellar oscillation modes leads to runaway disruption if the pericentre distance is smaller than about $3\rm \, au$. Over the past 5 Myr, its angular momentum has been significantly modified by orbital relaxation, which may stochastically drive the pericentre inwards below $3\rm \, au$ and cause tidal disruption. We find an overall survival probability in the range 5 per cent to 50 per cent, depending on the local relaxation time in the close environment of the captured star, and the initial pericentre at capture. The pericentre distance of the surviving star has migrated to 10–100 au, making it potentially the most extreme member of the S-star cluster. From the ejection rate ofmore »S5-HVS1-like stars, we estimate that there may currently be a few stars in such highly eccentric orbits. They should be detectable (typically $K_{\rm s}\lesssim 18.5\,$ mag) by the GRAVITY instrument and by future Extremely Large Telescopes and hence provide an extraordinary probe of the spin of SgrA*.« less