Diffusion-weighted magnetic resonance imaging (dMRI) allows for non-invasive, detailed examination of the white matter structures of the brain. White matter tract-specific measures based on either the diffusion tensor model (e.g. FA, ADC, and MD) or tractography (e.g. volume, streamline count or density) are often compared between groups of subjects to localize differences within the white matter. Less commonly examined is the shape of the individual white matter tracts. In this paper, we propose to use the Laplace-Beltrami (LB) spectrum as a descriptor of the shape of white matter tracts. We provide an open, automated pipeline for the computation of the LB spectrum on segmented white matter tracts and demonstrate its efficacy through machine learning classification experiments. We show that the LB spectrum allows for distinguishing subjects diagnosed with bipolar disorder from age and sex-matched healthy controls, with classification accuracy reaching 95%. We further demonstrate that the results cannot be explained by traditional measures, such as tract volume, streamline count or mean and total length. The results indicate that there is valuable information in the anatomical shape of the human white matter tracts.
White matter alterations in glaucoma and monocular blindness differ outside the visual system
Abstract The degree to which glaucoma has effects in the brain beyond the eye and the visual pathways is unclear. To clarify this, we investigated white matter microstructure (WMM) in 37 tracts of patients with glaucoma, monocular blindness, and controls. We used brainlife.io for reproducibility. White matter tracts were subdivided into seven categories ranging from those primarily involved in vision (the visual white matter) to those primarily involved in cognition and motor control. In the vision tracts, WMM was decreased as measured by fractional anisotropy in both glaucoma and monocular blind subjects compared to controls, suggesting neurodegeneration due to reduced sensory inputs. A test–retest approach was used to validate these results. The pattern of results was different in monocular blind subjects, where WMM properties increased outside the visual white matter as compared to controls. This pattern of results suggests that whereas in the monocular blind loss of visual input might promote white matter reorganization outside of the early visual system, such reorganization might be reduced or absent in glaucoma. The results provide indirect evidence that in glaucoma unknown factors might limit the reorganization as seen in other patient groups following visual loss.
- Publication Date:
- NSF-PAR ID:
- 10247294
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Background: Type 2 diabetes mellitus (T2DM) is known to be associated with neurobiological and cognitive deficits; however, their extent, overlap with aging effects, and the effectiveness of existing treatments in the context of the brain are currently unknown. Methods: We characterized neurocognitive effects independently associated with T2DM and age in a large cohort of human subjects from the UK Biobank with cross-sectional neuroimaging and cognitive data. We then proceeded to evaluate the extent of overlap between the effects related to T2DM and age by applying correlation measures to the separately characterized neurocognitive changes. Our findings were complemented by meta-analyses of published reports with cognitive or neuroimaging measures for T2DM and healthy controls (HCs). We also evaluated in a cohort of T2DM-diagnosed individuals using UK Biobank how disease chronicity and metformin treatment interact with the identified neurocognitive effects. Results: The UK Biobank dataset included cognitive and neuroimaging data (N = 20,314), including 1012 T2DM and 19,302 HCs, aged between 50 and 80 years. Duration of T2DM ranged from 0 to 31 years (mean 8.5 ± 6.1 years); 498 were treated with metformin alone, while 352 were unmedicated. Our meta-analysis evaluated 34 cognitive studies (N = 22,231) and 60 neuroimaging studies: 30more »
-
In order to better understand how our visual system processes information, we must understand the underlying brain connectivity architecture, and how it can get reorganized under visual deprivation. The full extent to which visual development and visual loss affect connectivity is not well known. To investigate the effect of the onset of blindness on structural connectivity both at the whole-brain voxel-wise level and at the level of all major whitematter tracts, we applied two complementary Diffusion-Tension Imaging (DTI) methods, TBSS and AFQ. Diffusion-weighted brain images were collected from three groups of participants: congenitally blind (CB), acquired blind (AB), and fully sighted controls. The differences between these groups were evaluated on a voxel-wise scale with Tract-Based Spatial Statistics (TBSS) method, and on larger-scale with Automated Fiber Quantification (AFQ), a method that allows for between-group comparisons at the level of the major fiber tracts. TBSS revealed that both blind groups tended to have higher FA than sighted controls in the central structures of the brain. AFQ revealed that, where the three groups differed, congenitally blind participants tended to be more similar to sighted controls than to those participants who had acquired blindness later in life. These differences were specifically manifested in themore »
-
We investigated the impact of age-related macular degeneration (AMD) on visual acuity and the visual white matter. We combined an adaptive cortical atlas and diffusion-weighted magnetic resonance imaging (dMRI) and tractography to separate optic radiation (OR) projections to different retinal eccentricities in human primary visual cortex. We exploited the known anatomical organization of the OR and clinically relevant data to segment the OR into three primary components projecting to fovea, mid- and far-periphery. We measured white matter tissue properties—fractional anisotropy, linearity, planarity, sphericity—along the aforementioned three components of the optic radiation to compare AMD patients and controls. We found differences in white matter properties specific to OR white matter fascicles projecting to primary visual cortex locations corresponding to the location of retinal damage (fovea). Additionally, we show that the magnitude of white matter properties in AMD patients’ correlates with visual acuity. In sum, we demonstrate a specific relation between visual loss, anatomical location of retinal damage and white matter damage in AMD patients. Importantly, we demonstrate that these changes are so profound that can be detected using magnetic resonance imaging data with clinical resolution. The conserved mapping between retinal and white matter damage suggests that retinal neurodegeneration might be amore »
-
ABSTRACT Anoxic subsurface sediments contain communities of heterotrophic microorganisms that metabolize organic carbon at extraordinarily low rates. In order to assess the mechanisms by which subsurface microorganisms access detrital sedimentary organic matter, we measured kinetics of a range of extracellular peptidases in anoxic sediments of the White Oak River Estuary, NC. Nine distinct peptidase substrates were enzymatically hydrolyzed at all depths. Potential peptidase activities ( V max ) decreased with increasing sediment depth, although V max expressed on a per-cell basis was approximately the same at all depths. Half-saturation constants ( K m ) decreased with depth, indicating peptidases that functioned more efficiently at low substrate concentrations. Potential activities of extracellular peptidases acting on molecules that are enriched in degraded organic matter ( d -phenylalanine and l -ornithine) increased relative to enzymes that act on l -phenylalanine, further suggesting microbial community adaptation to access degraded organic matter. Nineteen classes of predicted, exported peptidases were identified in genomic data from the same site, of which genes for class C25 (gingipain-like) peptidases represented more than 40% at each depth. Methionine aminopeptidases, zinc carboxypeptidases, and class S24-like peptidases, which are involved in single-stranded-DNA repair, were also abundant. These results suggest a subsurface heterotrophicmore »