skip to main content


Title: Lung Cancer Risk from Radon in Marcellus Shale Gas in Northeast U.S. Homes

The amount of radon in natural gas varies with its source. Little has been published about the radon from shale gas to date, making estimates of its impact on radon‐induced lung cancer speculative. We measured radon in natural gas pipelines carrying gas from the Marcellus Shale in Pennsylvania and West Virginia. Radon concentrations ranged from 1,520 to 2,750 Bq/m3(41–74 pCi/L), and the throughput‐weighted average was 1,983 Bq/m3(54 pCi/L). Potential radon exposure due to the use of Marcellus Shale gas for cooking and space heating using vent‐free heaters or gas ranges in northeastern U.S. homes and apartments was assessed. Though the measured radon concentrations are higher than what has been previously reported, it is unlikely that exposure from natural gas cooking would exceed 1.2 Bq/m3(<1% of the U.S. Environmental Protection Agency's action level). Using worst‐case assumptions, we estimate the excess lifetime (70 years) lung cancer risk associated with cooking to be 1.8×10−4(interval spanning 95% of simulation results: 8.5×10−5, 3.4×10−4). The risk profile for supplemental heating with unvented gas appliances is similar. Individuals using unvented gas appliances to provide primary heating may face lifetime risks as high as 3.9×10−3. Under current housing stock and gas consumption assumptions, expected levels of residential radon exposure due to unvented combustion of Marcellus Shale natural gas in the Northeast United States do not result in a detectable change in the lung cancer death rates.

 
more » « less
NSF-PAR ID:
10247458
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Risk Analysis
Volume:
36
Issue:
11
ISSN:
0272-4332
Page Range / eLocation ID:
p. 2105-2119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Extensive development of shale gas has generated some concerns about environmental impacts such as the migration of natural gas into water resources. We studied high gas concentrations in waters at a site near Marcellus Shale gas wells to determine the geological explanations and geochemical implications. The local geology may explain why methane has discharged for 7 years into groundwater, a stream, and the atmosphere. Gas may migrate easily near the gas wells in this location where the Marcellus Shale dips significantly, is shallow (∼1 km), and is more fractured. Methane and ethane concentrations in local water wells increased after gas development compared with predrilling concentrations reported in the region. Noble gas and isotopic evidence are consistent with the upward migration of gas from the Marcellus Formation in a free-gas phase. This upflow results in microbially mediated oxidation near the surface. Iron concentrations also increased following the increase of natural gas concentrations in domestic water wells. After several months, both iron and SO42−concentrations dropped. These observations are attributed to iron and SO42−reduction associated with newly elevated concentrations of methane. These temporal trends, as well as data from other areas with reported leaks, document a way to distinguish newly migrated methane from preexisting sources of gas. This study thus documents both geologically risky areas and geochemical signatures of iron and SO42−that could distinguish newly leaked methane from older methane sources in aquifers.

     
    more » « less
  2. Abstract

    The use of 3D printing technologies by industry and consumers is expanding. However, the approaches to assess the risk of lung carcinogenesis from the emissions of 3D printers have not yet been developed.

    The objective of the study was to demonstrate a methodology for modeling lung cancer risk related to specific exposure levels as derived from an experimental study of 3D printer emissions for various types of filaments (ABS, PLA, and PETG).

    The emissions of 15 filaments were assessed at varying extrusion temperatures for a total of 23 conditions in a Class 1,000 cleanroom following procedures described by ANSI/CAN/UL 2904. Three approaches were utilized for cancer risk estimation: (a) calculation based on PM2.5 and PM10 concentrations, (b) a proximity assessment based on the pulmonary deposition fraction, and (c) modeling based on the mass‐weighted aerodynamic diameter of particles.

    The combined distribution of emitted particles had the mass median aerodynamic diameter (MMAD) of 0.35 μm, GSD 2.25. The average concentration of PM2.5 was 25.21 μg/m3. The spline‐based function of aerodynamic diameter allowed us to reconstruct the carcinogenic potential of seven types of fine and ultrafine particles (crystalline silica, fine TiO2, ultrafine TiO2, ambient PM2.5 and PM10, diesel particulates, and carbon nanotubes) with a correlation of 0.999, P < 0.00001. The central tendency estimation of lung cancer risk for 3D printer emissions was found at the level of 14.74 cases per 10,000 workers in a typical exposure scenario (average cumulative exposure of 0.3 mg/m3– years), with the lowest risks for PLA filaments, and the highest for PETG type.

     
    more » « less
  3. Abstract

    Natural gas production in the United States has increased rapidly over the past decade, along with concerns about methane (CH4) fugitive emissions and its climate impacts. Quantification of CH4emissions from oil and natural gas (O&NG) operations is important for establishing scientifically sound policies for mitigating greenhouse gases. We use the aircraft mass balance approach for three flight experiments in August and September 2015 to estimate CH4emissions from O&NG operations over the southwestern Marcellus Shale. We estimate a mean CH4emission rate as 21.2 kg/s with 28% coming from O&NG operations. The mean CH4emission rate from O&NG operations was estimated to be 1.1% of total NG production. The individual best‐estimate emission rates from the three flight experiments ranged from 0.78 to 1.5%, with overall limits of 0% and 3.5%. These emission rates are at the low end of other top‐down studies, but consistent with the few observational studies in the Marcellus Shale region as well as the U.S. Environmental Protection Agency CH4inventory. A substantial source of CH4(~70% of observed CH4emissions) was found to contain little ethane, possibly due to coalbed CH4emitted either directly from coal mines or from wells drilled through coalbed layers in O&NG operations. Recent regulations requiring capture of gas from the completion‐venting step of hydraulic fracturing appear to have reduced the atmospheric release of CH4. Our study suggests that for a 20‐year time scale, energy derived from the combustion of natural gas extracted from this region likely exerts a net climate benefit compared to coal.

     
    more » « less
  4. Abstract

    Recent advances in shale gas development have largely outpaced efforts to manage associated waste streams that pose significant environmental risks. Wastewater management presents significant challenges in the Marcellus shale, where increasing fluid volumes concomitant with expanding development will threaten to overwhelm existing infrastructure over the next decade. In this work, we forecast growth in drilling, flowback, and produced fluid volumes through 2025 based on historic data and consider conventional and alternative disposal options to meet future demands. The results indicate that nearly 12 million m3(74 MMbbl) of wastewater will be generated annually by 2025. Even assuming wastewater recycling rates in the region rebound, meeting increased demands for wastewater that cannot be reused due to poor quality or logistics would require significant capital investment to expand existing disposal pathways, namely treatment and discharge at centralized facilities or dedicated brine injection in Ohio. Here, we demonstrate the logistical and environmental advantages of an alternative strategy: repurposing depleted oil and gas wells for dedicated injection of wastewater that cannot otherwise be reused or recycled. Hubs of depleted wells could accommodate projected increases in wastewater volumes more efficiently than existing disposal options, primarily because the proximity of depleted wells to active production sites would substantially reduce wastewater transport distances and associated costs. This study highlights the need to reevaluate regional-scale shale wastewater management practices in the context of evolving wastewater qualities and quantities, as strategic planning will result in more socially and economically favorable options while avoiding adverse environmental impacts that have overshadowed the environmental benefits of natural gas expansion in the energy sector.

     
    more » « less
  5. Abstract

    The resurgence of oil and gas extraction in the Appalachian Basin has resulted in an excess of oil and gas brines in Pennsylvania, West Virginia, and Ohio. Primarily driven by unconventional development, this expansion has also impacted conventional wells and consequently, created economic pressure to develop effective and cheap disposal options. Using brine as a road treatment, directly or as a processed deicer, however, creates substantial concern that naturally occurring radioactive material in the brines can contaminate roads and road-side areas. Current decision making is based on risk exposure scenarios developed by regulatory agencies based on recreational users in rural areas and exposures to drivers during a typical commute. These scenarios are not appropriate for evaluating exposures to residential deicer users or people living near treated streets. More appropriate exposure scenarios were developed in this work and exposures predicted with these models based on laboratory measurements and literature data. Exposure scenarios currently used for regulatory assessment of brine road treatment result in predicted exposures of 0.4–0.6 mrem/year. Residential exposures predicted by the scenarios developed in this work are 4.6 mrem/year. If the maximum range of near-road soil radium concentrations observed in the region is used in this residential scenario (60 pCi/g226Ra, 50 pCi/g228Ra), residents living near these roads would be exposed to an estimated 296 mrems/year, above regulatory exposure thresholds used in nuclear facility siting assessments. These results underline the urgent need to clarify exposure risks from the use of oil and gas brines as a road treatment, particularly given the existing disparities in the distribution of road impacts across socioeconomic status.

     
    more » « less