skip to main content


Title: Oil and gas wastewater as road treatment: radioactive material exposure implications at the residential lot and block scale
Abstract

The resurgence of oil and gas extraction in the Appalachian Basin has resulted in an excess of oil and gas brines in Pennsylvania, West Virginia, and Ohio. Primarily driven by unconventional development, this expansion has also impacted conventional wells and consequently, created economic pressure to develop effective and cheap disposal options. Using brine as a road treatment, directly or as a processed deicer, however, creates substantial concern that naturally occurring radioactive material in the brines can contaminate roads and road-side areas. Current decision making is based on risk exposure scenarios developed by regulatory agencies based on recreational users in rural areas and exposures to drivers during a typical commute. These scenarios are not appropriate for evaluating exposures to residential deicer users or people living near treated streets. More appropriate exposure scenarios were developed in this work and exposures predicted with these models based on laboratory measurements and literature data. Exposure scenarios currently used for regulatory assessment of brine road treatment result in predicted exposures of 0.4–0.6 mrem/year. Residential exposures predicted by the scenarios developed in this work are 4.6 mrem/year. If the maximum range of near-road soil radium concentrations observed in the region is used in this residential scenario (60 pCi/g226Ra, 50 pCi/g228Ra), residents living near these roads would be exposed to an estimated 296 mrems/year, above regulatory exposure thresholds used in nuclear facility siting assessments. These results underline the urgent need to clarify exposure risks from the use of oil and gas brines as a road treatment, particularly given the existing disparities in the distribution of road impacts across socioeconomic status.

 
more » « less
Award ID(s):
2012409
NSF-PAR ID:
10305121
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Communications
Volume:
3
Issue:
11
ISSN:
2515-7620
Page Range / eLocation ID:
Article No. 115008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The formation of precipitates (scales) during reinjection limits the reuse of oil and gas production water (produced water) for additional oil recovery. Selective removal strategies that target Ba and Sr, the primary scale-forming cations, would limit produced water treatment costs, reduce waste generation, and increase produced water reuse. A novel treatment technique for targeted Ba and Sr removal, complexation with polyelectrolyte polymers, is compared with chemical precipitation (sulfate addition and precipitative softening) for the removal of Ba and Sr from Kansas oil field brines. Four polymers were examined for cation removal, both with and without ultrafiltration: poly-vinyl sulfonate (PVS), poly(4-styrenesulfonate) (PSS), polyacrylic acid (PAA), and poly(4-styrenesulfonic acid- co -maleic acid) (PSSM). PSSM and PSS were effective for Ba and Sr removal from the lower salinity brine (TDS of 31 000 mg L −1 ), but exhibited limited Sr removal in the absence of Ba in the high salinity brine (TDS of 92 000 mg l −1 ). Similar results were achieved in both brines using sulfate addition. PSSM used in conjunction with ultrafiltration removed >99% of initial Sr and Ba from the lower salinity brine, while removing only 65% and 78% of Mg and Ca, respectively. These results compare favorably to precipitative softening, which removed >90% of all divalent cations from the same brine but was less selective for Ba and Sr. PAA plus ultrafiltration removed 58% of Sr (and 68% of Ca) from the high-salinity brine at pH 9. While increased Sr removal can be achieved by polymer-assisted ultrafiltration, further development of this process, including methods for polymer recovery and regeneration, will be needed to improve its performance compared to precipitative softening. 
    more » « less
  2. Abstract

    The GuLF STUDY, initiated by the National Institute of Environmental Health Sciences, is investigating the health effects among workers involved in the oil spill response and clean-up (OSRC) after the Deepwater Horizon (DWH) explosion in April 2010 in the Gulf of Mexico. Clean-up included in situ burning of oil on the water surface and flaring of gas and oil captured near the seabed and brought to the surface. We estimated emissions of PM2.5 and related pollutants resulting from these activities, as well as from engines of vessels working on the OSRC. PM2.5 emissions ranged from 30 to 1.33e6 kg per day and were generally uniform over time for the flares but highly episodic for the in situ burns. Hourly emissions from each source on every burn/flare day were used as inputs to the AERMOD model to develop average and maximum concentrations for 1-, 12-, and 24-h time periods. The highest predicted 24-h average concentrations sometimes exceeded 5000 µg m−3 in the first 500 m downwind of flaring and reached 71 µg m−3 within a kilometer of some in situ burns. Beyond 40 km from the DWH site, plumes appeared to be well mixed, and the predicted 24-h average concentrations from the flares and in situ burns were similar, usually below 10 µg m−3. Structured averaging of model output gave potential PM2.5 exposure estimates for OSRC workers located in various areas across the Gulf. Workers located nearest the wellhead (hot zone/source workers) were estimated to have a potential maximum 12-h exposure of 97 µg m−3 over the 2-month flaring period. The potential maximum 12-h exposure for workers who participated in in situ burns was estimated at 10 µg m−3 over the ~3-month burn period. The results suggest that burning of oil and gas during the DWH clean-up may have resulted in PM2.5 concentrations substantially above the U.S. National Ambient Air Quality Standard for PM2.5 (24-h average = 35 µg m−3). These results are being used to investigate possible adverse health effects in the GuLF STUDY epidemiologic analysis of PM2.5 exposures.

     
    more » « less
  3. With recent improvements in high-volume hydraulic fracturing (HVHF, known to the public as fracking), vast new reservoirs of natural gas and oil are now being tapped. As HVHF has expanded into the populous northeastern USA, some residents have become concerned about impacts on water quality. Scientists have addressed this concern by investigating individual case studies or by statistically assessing the rate of problems. In general, however, lack of access to new or historical water quality data hinders the latter assessments. We introduce a new statistical approach to assess water quality datasets – especially sets that differ in data volume and variance – and apply the technique to one region of intense shale gas development in northeastern Pennsylvania (PA) and one with fewer shale gas wells in northwestern PA. The new analysis for the intensely developed region corroborates an earlier analysis based on a different statistical test: in that area, changes in groundwater chemistry show no degradation despite that area's dense development of shale gas. In contrast, in the region with fewer shale gas wells, we observe slight but statistically significant increases in concentrations in some solutes in groundwaters. One potential explanation for the slight changes in groundwater chemistry in that area (northwestern PA) is that it is the regional focus of the earliest commercial development of conventional oil and gas (O&G) in the USA. Alternate explanations include the use of brines from conventional O&G wells as well as other salt mixtures on roads in that area for dust abatement or de-icing, respectively. 
    more » « less
  4. Unconventional oil and gas residual solid wastes are generally disposed in municipal waste landfills (RCRA Subtitle D), but they contain valuable raw materials such as proppant sands. A novel process for recovering raw materials from hydraulic fracturing residual waste is presented. Specifically, a novel hydroacoustic cavitation system, combined with physical separation devices, can create a distinct stream of highly concentrated sand, and another distinct stream of clay from the residual solid waste by the dispersive energy of cavitation conjoined with ultrasonics, ozone and hydrogen peroxide. This combination cleaned the sand grains, by removing previously aggregated clays and residues from the sand surfaces. When these unit operations were followed by a hydrocyclone and spiral, the solids could be separated by particle size, yielding primarily cleaned sand in one flow stream; clays and fine particles in another; and silts in yet a third stream. Consequently, the separation of particle sizes also affected radium distribution – the sand grains had low radium activities, as lows as 0.207 Bq g −1 (5.6 pCi g −1 ). In contrast, the clays had elevated radium activities, as high as 1.85–3.7 Bq g −1 (50–100 pCi g −1 ) – and much of this radium was affiliated with organics and salts that could be separated from the clays. We propose that the reclaimed sand could be reused as hydraulic fracturing proppant. The separation of sand from silt and clay could reduce the volume and radium masses of wastes that are disposed in landfills. This could represent a significant savings to facilities handling oil and gas waste, as much as $100 000–300 000 per year. Disposing the radium-enriched salts and organics downhole will mitigate radium release to the surface. Additionally, the reclaimed sand could have market value, and this could represent as much as a third of the cost savings. Tests that employed the toxicity characteristic leaching protocol (TCLP) on these separated solids streams determined that this novel treatment diminished the risk of radium mobility for the reclaimed sand, clays or disposed material, rendering them better suited for landfilling. 
    more » « less
  5. The development of the transport network affects the socio-economic development of the territory and it is one of the most important factors in the growth of the level and quality of the population life. There is the need for a study of transport accessibility. In our work, we presented the mapping and assessment of changes in transport accessibility after the construction of service road. After the construction of the ESPO pipeline, a service road was built along it to maintenance the pipeline, which is located close to the district centers and crosses the local roads. This new road connected them into one network with year-round traffic. The object of our research is the Area of Oil and Gas Extraction in the Republic of Sakha (Yakutia) and the North Irkutsk region.We have created transport accessibility maps with and without all service roads, separately for winter and summer seasons. We have created maps for several district centers. We calculated transport accessibility using the method of constructing isochrones — lines of equal travel time to overcome the space relative to given points, using open GIS GRASS GIS. After construction, the company owner of this road gives permission to the municipal and federal services and local population use for free, but a preliminary application is required. There is a payment requirement and compliance with restrictions for transportation of commercial goods. After the construction of the ESPO pipeline, people who live close to the pipeline can reach to the district centers and neighboring districts by car year-round theoretically. The materials of this study can be useful in calculating the travel time on these roads, and finding priority areas for the construction of new roads. 
    more » « less