skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anchoring Computational Thinking in Upper Elementary Physical Science Through Problem-Centered Storytelling and Play
In an effort to infuse computational thinking practices in upper elementary science, and to promote positive student dispositions toward STEM, this project investigates a new narrative-centered maker environment involving: 1) problem-based learning research and modeling of physical science concepts, 2) application of learned concepts to original digital stories created using block-based programming, and 3) further communication of science understanding through play with fabricated story sets and characters reflective of narratives.  more » « less
Award ID(s):
1921503
PAR ID:
10247745
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
14th International Conference of the Learning Sciences (ICLS) 2020
Volume:
3
Page Range / eLocation ID:
1743-1744
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In an effort to infuse computational thinking practices in upper elementary science, and to promote positive student dispositions toward STEM, this project investigates a new narrative-centered maker environment involving: 1) problem-based learning research and modeling of physical science concepts, 2) application of learned concepts to original digital stories created using block-based programming, and 3) further communication of science understanding through play with fabricated story sets and characters reflective of narratives. 
    more » « less
  2. Engineering design that requires mathematical analysis, scientific understanding, and technology is critical for preparing students for solving engineering problems. In simulated design environments, students are expected to learn about science and engineering through their design. However, there is a lack of understanding concerning linking science concepts with design problems to design artifacts. This study investigated how 99 high school students applied science concepts to solarize their school using a computer-aided engineering design software, aiming to explore the interaction between students’ science concepts and engineering design behaviors. Students were assigned to three groups based on their design performance: the achieving group, proficient group, and emerging group. By mining log activities, we explored the interactions among students’ application of science concepts, engineering design behaviors, design iterations, and their design performance. We found that the achieving group has a statistically higher number of design iterations than the other two performance groups. We also identified distinctive transition patterns in students’ applying science concepts and exercising design behaviors among three groups. The implications of this study are then discussed. 
    more » « less
  3. Performance assessment (PA) has been increasingly advocated as a method for measuring students’ conceptual understanding of scientific phenomena. In this study, we describe preliminary findings of a simulation- based PA utilized to measure 8th grade students’ understanding of physical science concepts taught via an experimental problem-based curriculum, SLIDER (Science Learning Integrating Design Engineering and Robotics). In SLIDER, students use LEGO robotics to complete a series of investigations and engineering design challenges designed to deepen their understanding of key force and motion concepts (net force, acceleration, friction, balanced forces, and inertia). The simulation-based performance assessment consisted of 4 tasks in which students engaged with video simulations illustrating physical science concepts aligned to the SLIDER curriculum. The performance assessment was administered to a stratified sample of 8th grade students (N=24) in one school prior to and following implementation of the SLIDER curriculum. In addition to providing an illustration of the use of simulation- based performance assessment in the context of design-based implementation research (DBIR), the results of the study indicate preliminary evidence of student learning over the course of curriculum implementation. 
    more » « less
  4. After the passage of the U.S. National Quantum Initiative Act in December 2018, the National Science Foundation (NSF) and the Office of Science and Technology Policy (OSTP) recently assembled an interagency working group and conducted a workshop titled “Key Concepts for Future Quantum Information Science Learners” that focused on identifying core concepts for future curricular and educator activities to help precollege students engage with quantum information science (QIS). Helping precollege students learn these key concepts in QIS is an effective approach to introducing them to the second quantum revolution and inspiring them to become future contributors in the growing field of quantum information science and technology as leaders in areas related to quantum computing, communication, and sensing. This paper is a call to precollege educators to contemplate including QIS concepts into their existing courses at appropriate levels and get involved in the development of curricular materials suitable for their students. Also, research shows that compare-and-contrast activities can provide an effective approach to helping students learn. Therefore, we illustrate a pedagogical approach that contrasts the classical and quantum concepts so that educators can adapt them for their students in their lesson plans to help them learn the differences between key concepts in quantum and classical contexts. 
    more » « less
  5. Science faculty are being asked to create active learning experiences that engage students in core concepts and science practices. This article describes an approach to developing active learning lessons from authentic science research projects using the 5E lesson format. Included is a description of the 5Es and a template for creating a 5E lesson. A description of the authors’ scientific research and the resulting 5E lesson for an introductory biology course are provided as an example of this approach. In the lesson described, students collected, analyzed, and interpreted data to construct explanations about the potential for evolution to occur in response to climate change. This approach supported students in learning core concepts and science practices and allowed the instructors to implement an active learning environment based on national science reforms. The results of this exploratory study and the rich descriptions of the lesson design should be used to raise awareness of one active-learning approach. Scientists can consider using this approach in their own teaching, and science education researchers can consider this approach in future comparative studies across various activelearning approaches. 
    more » « less