skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Small Island Effects in DYNAMO and Their Impact on Large-Scale Budget Analyses
Abstract During the Dynamics of the MJO (DYNAMO) field campaign, radiosonde launches were regularly conducted from three small islands/atolls (Malé and Gan, Maldives, and Diego Garcia, British Indian Ocean Territory) as part of a large-scale sounding network. Comparison of island upsondes with nearby and near-contemporaneous dropsondes over the ocean provides evidence for the magnitude and scope of the islands’ influence on the surrounding atmosphere and on the island upsonde profiles. The island’s impact on the upsonde data is most prominent in the lowest 200 m. Noting that the vertical gradients of temperature, moisture, and winds over the ocean are generally constant in the lowest 0.5 km of dropsondes, a simple procedure was constructed to adjust the upsonde profiles in the lowest few hundred meters to resemble the atmospheric structures over the open ocean. This procedure was applied to the soundings from the three islands mentioned above for the October–December 2011 period of DYNAMO. As a result of this procedure, the adjusted diurnal cycle amplitude of surface temperature is reduced fivefold, resembling that over the ocean, and low-level wind speeds are increased in ~90% of the island soundings. Examination of the impact of these sounding adjustments shows that dynamical and budget fields are primarily affected by adjustments to the wind field, whereas convective parameters are sensitive to the adjustments in thermodynamic fields. Although the impact of the adjustments is generally small (on the order of a few percent), intraseasonal wind regime changes result in some systematic variations in divergence and vertical motion over the sounding arrays.  more » « less
Award ID(s):
1853633
PAR ID:
10247748
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Applied Meteorology and Climatology
Volume:
60
Issue:
4
ISSN:
1558-8424
Page Range / eLocation ID:
577 to 594
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Analyses of atmospheric heat and moisture budgets serve as an effective tool to study convective characteristics over a region and to provide large‐scale forcing fields for various modeling applications. This paper examines two popular methods for computing large‐scale atmospheric budgets: the conventional budget method (CBM) using objectively gridded analyses based primarily on radiosonde data and the constrained variational analysis (CVA) approach which supplements vertical profiles of atmospheric fields with measurements at the top of the atmosphere and at the surface to conserve mass, water, energy, and momentum. Successful budget computations are dependent on accurate sampling and analyses of the thermodynamic state of the atmosphere and the divergence field associated with convection and the large‐scale circulation that influences it. Utilizing analyses generated from data taken during Dynamics of the Madden‐Julian Oscillation (DYNAMO) field campaign conducted over the central Indian Ocean from October to December 2011, we evaluate the merits of these budget approaches and examine their limitations. While many of the shortcomings of the CBM, in particular effects of sampling errors in sounding data, are effectively minimized with CVA, accurate large‐scale diagnostics in CVA are dependent on reliable background fields and rainfall constraints. For the DYNAMO analyses examined, the operational model fields used as the CVA background state provided wind fields that accurately resolved the vertical structure of convection in the vicinity of Gan Island. However, biases in the model thermodynamic fields were somewhat amplified in CVA resulting in a convective environment much weaker than observed. 
    more » « less
  2. During the Plains Elevated Convection at Night (PECAN) field campaign, 15 mesoscale convective system (MCS) environments were sampled by an array of instruments including radiosondes launched by three mobile sounding teams. Additional soundings were collected by fixed and mobile PECAN integrated sounding array (PISA) groups for a number of cases. Cluster analysis of observed vertical profiles established three primary preconvective categories: 1) those with an elevated maximum in equivalent potential temperature below a layer of potential instability; 2) those that maintain a daytime-like planetary boundary layer (PBL) and nearly potentially neutral low levels, sometimes even well after sunset despite the existence of a southerly low-level wind maximum; and 3) those that are potentially neutral at low levels, but have very weak or no southerly low-level winds. Profiles of equivalent potential temperature in elevated instability cases tend to evolve rapidly in time, while cases in the potentially neutral categories do not. Analysis of composite Rapid Refresh (RAP) environments indicate greater moisture content and moisture advection in an elevated layer in the elevated instability cases than in their potentially neutral counterparts. Postconvective soundings demonstrate significantly more variability, but cold pools were observed in nearly every PECAN MCS case. Following convection, perturbations range between −1.9 and −9.1 K over depths between 150 m and 4.35 km, but stronger, deeper stable layers lead to structures where the largest cold pool temperature perturbation is observed above the surface. 
    more » « less
  3. Abstract The wind-driven exchange through complex ridges and islands between marginal seas and the open ocean is studied using both numerical and analytical models. The models are forced by a steady, spatially uniform northward wind stress intended to represent the large-scale, low-frequency wind patterns typical of the seasonal monsoons in the western Pacific Ocean. There is an eastward surface Ekman transport out of the marginal sea and westward geostrophic inflows into the marginal sea. The interaction between the Ekman transport and an island chain produces strong baroclinic flows along the island boundaries with a vertical depth that scales with the ratio of the inertial boundary layer thickness to the baroclinic deformation radius. The throughflows in the gaps are characterized by maximum transport in the center gap and decreasing transports toward the southern and northern tips of the island chain. An extended island rule theory demonstrates that throughflows are determined by the collective balance between viscosity on the meridional boundaries and the eastern side boundary of the islands. The outflowing transport is balanced primarily by a shallow current that enters the marginal sea along its equatorward boundary. The islands can block some direct exchange and result in a wind-driven overturning cell within the marginal sea, but this is compensated for by eastward zonal jets around the southern and northern tips of the island chain. Topography in the form of a deep slope, a ridge, or shallow shelves around the islands alters the current pathways but ultimately is unable to limit the total wind-driven exchange between the marginal sea and the open ocean. 
    more » « less
  4. Abstract Thorpe analysis has been used to study turbulence in the atmosphere and ocean. It is clear that Thorpe analysis applied to individual soundings cannot be expected to give quantitatively reliable measurements of turbulence parameters because of the instantaneous nature of the measurement. A critical aspect of this analysis is the assumption of the linear relationship C = LO/LT between the Thorpe scale LT, derived from the sounding measurements, and the Ozmidov scale LO. It is the determination of LO that enables determination of the dissipation rate of turbulence kinetic energy ε. Single atmospheric and oceanic soundings cannot indicate either the source of turbulence or the stage of its evolution; different values of C are expected for different turbulence sources and stages of the turbulence evolution and thus cannot be expected to yield quantitatively reliable turbulence parameters from individual profiles. The variation of C with the stage of turbulence evolution is illustrated for direct numerical simulation (DNS) results for gravity wave breaking. Results from a DNS model of multiscale initiation and evolution of turbulence with a Reynolds number Re (which is defined using the vertical wavelength of the primary gravity wave and background buoyancy period as length and time scales, respectively) of 100 000 are sampled as in sounding of the atmosphere and ocean, and various averaging of the sounding results indicates a convergence to a well-defined value of C, indicating that applying Thorpe analysis to atmospheric or oceanic soundings and averaging over a number of profiles gives more reliable turbulence determinations. The same averaging study is also carried out when the DNS-modeled turbulence is dominated by turbulence growing from the initial instabilities, when the turbulence is fully developed, when the modeled turbulence is decaying, and when the turbulence is in a still-later decaying stage. These individual cases converge to well defined values of C, but these values of C show a large variation resulting from the different stages of turbulence evolution. This study gives guidance as to the accuracy of Thorpe analysis of turbulence as a function of the number of profiles being averaged. It also suggests that the values of C in different environments likely depend on the dominant turbulence initiation mechanisms and on the Reynolds number of the environment. 
    more » « less
  5. null (Ed.)
    Abstract Hundreds of supercell proximity soundings obtained for field programs over the central United States are analyzed to reconcile differences in recent studies and to refine our knowledge of supercell environments. The large, storm-centric observation-based dataset and high vertical resolution of the sounding data provide an unprecedented look at supercell environments. Not surprisingly, storm-relative environmental helicity (SRH) is found to be larger in tornadic soundings than in nontornadic soundings. The primary finding that departs from previous studies is that storm-relative winds contribute substantially to the larger SRH. Stronger ground-relative winds and more rightward-deviant storm motions contribute to the larger storm-relative winds for the tornadic soundings. Spatial analyses of the soundings reveal lower near-ground pressure perturbations and stronger low- to midlevel cyclonic flow for the tornadic soundings, which suggests stronger mesocyclones, perhaps explaining the more rightward-deviant motions. Differences in the mean critical angle between the tornadic and nontornadic soundings are small and do not contribute to the larger mean SRH, but the tornadic soundings do have fewer instances of smaller (<60°) critical angles. Furthermore, the critical angle is shown to be a function of azimuth from the updraft. Other results include a low-to-the-ground (~250 m on average) hodograph kink for both the tornadic and nontornadic soundings and few notable differences in thermodynamic quantities, except for the expected lower LCLs related to higher RH for the tornadic soundings, somewhat smaller 0–3 km lapse rates in tornadic environments related to weaker/shallower capping inversions, and larger 0–3 km CAPE in near-field environments. 
    more » « less