skip to main content


Title: Hierarchical planning for resource allocation in emergency response systems
A classical problem in city-scale cyber-physical systems (CPS) is resource allocation under uncertainty. Spatial-temporal allocation of resources is optimized to allocate electric scooters across urban areas, place charging stations for vehicles, and design efficient on-demand transit. Typically, such problems are modeled as Markov (or semi-Markov) decision processes. While online, offline, and decentralized methodologies have been used to tackle such problems, none of the approaches scale well for large-scale decision problems. We create a general approach to hierarchical planning that leverages structure in city-level CPS problems to tackle resource allocation under uncertainty. We use emergency response as a case study and show how a large resource allocation problem can be split into smaller problems. We then create a principled framework for solving the smaller problems and tackling the interaction between them. Finally, we use real-world data from a major metropolitan area in the United States to validate our approach. Our experiments show that the proposed approach outperforms state-of-the-art approaches used in the field of emergency response.  more » « less
Award ID(s):
1814958 1640624
PAR ID:
10247921
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
12th ACM/IEEE International Conference on Cyber-Physical Systems,
Page Range / eLocation ID:
155 to 166
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Emergency response to incidents such as accidents, crimes, and fires is a major problem faced by communities. Emergency response management comprises of several stages and sub-problems like forecasting, resource allocation, and dispatch. The design of principled approaches to tackle each problem is necessary to create efficient emergency response management (ERM) pipelines. Over the last six years, we have worked with several first responder organizations to design ERM pipelines. In this paper, we highlight some of the challenges that we have identified and lessons that we have learned through our experience in this domain. Such challenges are particularly relevant for practitioners and researchers, and are important considerations even in the design of response strategies to mitigate disasters like floods and earthquakes. 
    more » « less
  2. Computation of optimal recovery decisions for community resilience assurance post-hazard is a combinatorial decision-making problem under uncertainty. It involves solving a large-scale optimization problem, which is significantly aggravated by the introduction of uncertainty. In this paper, we draw upon established tools from multiple research communities to provide an effective solution to this challenging problem. We provide a stochastic model of damage to the water network (WN) within a testbed community following a severe earthquake and compute near-optimal recovery actions for restoration of the water network. We formulate this stochastic decision-making problem as a Markov Decision Process (MDP), and solve it using a popular class of heuristic algorithms known as rollout. A simulation-based representation of MDPs is utilized in conjunction with rollout and the Optimal Computing Budget Allocation (OCBA) algorithm to address the resulting stochastic simulation optimization problem. Our method employs non-myopic planning with efficient use of simulation budget. We show, through simulation results, that rollout fused with OCBA performs competitively with respect to rollout with total equal allocation (TEA) at a meagre simulation budget of 5-10% of rollout with TEA, which is a crucial step towards addressing large-scale community recovery problems following natural disasters. 
    more » « less
  3. Emergency Response Management (ERM) is a critical problem faced by communities across the globe. Despite this, it is common for ERM systems to follow myopic decision policies in the real world. Principled approaches to aid ERM decision-making under uncertainty have been explored but have failed to be accepted into real systems. We identify a key issue impeding their adoption --- algorithmic approaches to emergency response focus on reactive, post-incident dispatching actions, i.e. optimally dispatching a responder after incidents occur. However, the critical nature of emergency response dictates that when an incident occurs, first responders always dispatch the closest available responder to the incident. We argue that the crucial period of planning for ERM systems is not post-incident, but between incidents. This is not a trivial planning problem --- a major challenge with dynamically balancing the spatial distribution of responders is the complexity of the problem. An orthogonal problem in ERM systems is planning under limited communication, which is particularly important in disaster scenarios that affect communication networks. We address both problems by proposing two partially decentralized multi-agent planning algorithms that utilize heuristics and exploit the structure of the dispatch problem. We evaluate our proposed approach using real-world data, and find that in several contexts, dynamic re-balancing the spatial distribution of emergency responders reduces both the average response time as well as its variance. 
    more » « less
  4. Emergency Response Management (ERM) is a critical problem faced by communities across the globe. Despite this, it is common for ERM systems to follow myopic decision policies in the real world. Principled approaches to aid ERM decision-making under uncertainty have been explored but have failed to be accepted into real systems. We identify a key issue impeding their adoption — algorithmic approaches to emergency response focus on reactive, post-incident dispatching actions, i.e. optimally dispatching a responder after incidents occur. However, the critical nature of emergency response dictates that when an incident occurs, first responders always dispatch the closest available responder to the incident. We argue that the crucial period of planning for ERM systems is not post-incident, but between incidents. This is not a trivial planning problem — a major challenge with dynamically balancing the spatial distribution of responders is the complexity of the problem. An orthogonal problem in ERM systems is planning under limited communication, which is particularly important in disaster scenarios that affect communication networks. We address both problems by proposing two partially decentralized multi-agent planning algorithms that utilize heuristics and exploit the structure of the dispatch problem. We evaluate our proposed approach using real-world data, and find that in several contexts, dynamic re-balancing the spatial distribution of emergency responders reduces both the average response time as well as its variance. 
    more » « less
  5. Many resource management problems require sequential decision-making under uncertainty, where the only uncertainty affecting the decision outcomes are exogenous variables outside the control of the decision-maker. We model these problems as Exo-MDPs (Markov Decision Processes with Exogenous Inputs) and design a class of data-efficient algorithms for them termed Hindsight Learning (HL). Our HL algorithms achieve data efficiency by leveraging a key insight: having samples of the exogenous variables, past decisions can be revisited in hindsight to infer counterfactual consequences that can accelerate policy improvements. We compare HL against classic baselines in the multi-secretary and airline revenue management problems. We also scale our algorithms to a business-critical cloud resource management problem – allocating Virtual Machines (VMs) to physical machines, and simulate their performance with real datasets from a large public cloud provider. We find that HL algorithms outperform domain-specific heuristics, as well as state-of-the-art reinforcement learning methods. 
    more » « less