skip to main content

Title: Solidity effects on the performance of vertical-axis wind turbines
Abstract The variety of configurations for vertical-axis wind turbines (VAWTs) make the development of universal scaling relationships for even basic performance parameters difficult. Rotor geometry changes can be characterized using the concept of solidity, defined as the ratio of solid rotor area to the swept area. However, few studies have explored the effect of this parameter at full-scale conditions due to the challenge of matching both the non-dimensional rotational rate (or tip speed ratio) and scale (or Reynolds number) in conventional wind tunnels. In this study, experiments were conducted on a VAWT model using a specialized compressed-air wind tunnel where the density can be increased to over 200 times atmospheric air. The number of blades on the model was altered to explore how solidity affects performance while keeping other geometric parameters, such as the ratio of blade chord to rotor radius, the same. These data were collected at conditions relevant to the field-scale VAWT but in the controlled environment of the lab. For the three highest solidity rotors (using the most blades), performance was found to depend similarly on the Reynolds number, despite changes in rotational effects. This result has direct implications for the modelling and design of high-solidity field-scale more » VAWTs. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. We introduce an improved formulation of the double-multiple streamtube (DMST) model for the prediction of the flow quantities of vertical axis wind turbines (VAWT). The improvement of the new formulation lies in that it renders the DMST valid for any induction factor, i.e., for any combination of rotor solidity and tip speed ratio. This is done by replacing the Rankine–Froude momentum theory of the DMST, which is invalid for moderate and high induction factors, with a new momentum theory recently proposed, which provides sensible results for any induction factor. The predictions of the two DMST formulations are compared with VAWT power measurements obtained at Princeton's High Reynolds number Test Facility, over a range of tip speed ratios, rotor solidities, and Reynolds numbers, including those experienced by full-scale turbines. The results show that the new DMST formulation demonstrates a better overall performance, compared to the conventional one, when the rotor loading is moderate or high.
  2. To design and optimize arrays of vertical-axis wind turbines (VAWTs) for maximal power density and minimal wake losses, a careful consideration of the inherently three-dimensional structure of the wakes of these turbines in real operating conditions is needed. Accordingly, a new volumetric particle-tracking velocimetry method was developed to measure three-dimensional flow fields around full-scale VAWTs in field conditions. Experiments were conducted at the Field Laboratory for Optimized Wind Energy (FLOWE) in Lancaster, CA, using six cameras and artificial snow as tracer particles. Velocity and vorticity measurements were obtained for a 2 kW turbine with five straight blades and a 1 kW turbine with three helical blades, each at two distinct tip-speed ratios and at Reynolds numbers based on the rotor diameter $D$ between $1.26 \times 10^{6}$ and $1.81 \times 10^{6}$ . A tilted wake was observed to be induced by the helical-bladed turbine. By considering the dynamics of vortex lines shed from the rotating blades, the tilted wake was connected to the geometry of the helical blades. Furthermore, the effects of the tilted wake on a streamwise horseshoe vortex induced by the rotation of the turbine were quantified. Lastly, the implications of this dynamics for the recovery of the wakemore »were examined. This study thus establishes a fluid-mechanical connection between the geometric features of a VAWT and the salient three-dimensional flow characteristics of its near-wake region, which can potentially inform both the design of turbines and the arrangement of turbines into highly efficient arrays.« less
  3. Laboratory experiments were performed on a geometrically scaled vertical-axis wind turbine model over an unprecedented range of Reynolds numbers, including and exceeding those of the full-scale turbine. The study was performed in the high-pressure environment of the Princeton High Reynolds number Test Facility (HRTF). Utilizing highly compressed air as the working fluid enabled extremely high Reynolds numbers while still maintaining dynamic similarity by matching the tip speed ratio (defined as the ratio of tip velocity to free stream, $\unicode[STIX]{x1D706}=\unicode[STIX]{x1D714}R/U$ ) and Mach number (defined at the turbine tip, $Ma=\unicode[STIX]{x1D714}R/a$ ). Preliminary comparisons are made with measurements from the full-scale field turbine. Peak power for both the field data and experiments resides around $\unicode[STIX]{x1D706}=1$ . In addition, a systematic investigation of trends with Reynolds number was performed in the laboratory, which revealed details about the asymptotic behaviour. It was shown that the parameter that characterizes invariance in the power coefficient was the Reynolds number based on blade chord conditions ( $Re_{c}$ ). The power coefficient reaches its asymptotic value when $Re_{c}>1.5\times 10^{6}$ , which is higher than what the field turbine experiences. The asymptotic power curve is found, which is invariant to further increases in Reynolds number.
  4. A memory efficient framework is developed for the aerodynamic design optimization of helicopter rotor blades in hover. This framework is based on a fully-automated discrete-adjoint toolbox called FDOT. The in-house toolbox is capable of computing sensitivity or gradient information very accurately, and uses an operator-overloading technique that takes advantage of a unique expression-template-based approach for memory and computational efficiency while still being fully-automated with minimal user interventions. The main goal of the present work is to "design" helicopter rotor blades with increased figure-of-merit. Therefore, the flow around the Caradonna-Tung rotor in non-lifting and lifting hover conditions is studied in order to validate the primal and adjoint solvers based on a rotating frame of reference formulation. The efficacy of the optimization framework is first demonstrated for drag minimization of a rotating NACA 0012 airfoil, which resembles a Vertical-Axis Wind Turbine (VAWT) configuration. Finally, the single- and multi-point design optimization results for the Caradonna-Tung rotor are presented. It is important to note that the current approach (FDOT) can be directly coupled -- in a "black-box" manner -- to other existing codes in the Helios computational platform, which is part of CREATE-AV.
  5. Dominant flow features in the near and intermediate wake of a horizontal-axis wind turbine are studied at near field-scale Reynolds numbers. Measurements of the axial velocity component were performed using a nano-scale hot-wire anemometer and analyzed using spectral methods to reveal the extent and evolution of the flow features. Experiments were conducted at a range of Reynolds numbers, of [Formula: see text], based on the rotor diameter and freestream velocity. Five different downstream locations were surveyed, between [Formula: see text], including the near wake, transition to the intermediate wake, and the intermediate wake. Three dominant wake features are identified and studied: the tip vortices, an annular shear layer in the wake core, and wake meandering. The tip vortices are shown to have a broadband influence in the flow in their vicinity, which locally alters the turbulence in that area. It is shown that shedding in the wake core and wake meandering are two distinct and independent low frequency features, and the wake meandering persists into the intermediate wake, whereas the signatures of the core shedding vanish early in the near wake.