skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Landmark-based distributed topological mapping and navigation in GPS-denied urban environments using teams of low-cost robots
Abstract In this paper, we address the problem of autonomous multi-robot mapping, exploration and navigation in unknown, GPS-denied indoor or urban environments using a team of robots equipped with directional sensors with limited sensing capabilities and limited computational resources. The robots have no a priori knowledge of the environment and need to rapidly explore and construct a map in a distributed manner using existing landmarks, the presence of which can be detected using onboard senors, although little to no metric information (distance or bearing to the landmarks) is available. In order to correctly and effectively achieve this, the presence of a necessary density/distribution of landmarks is ensured by design of the urban/indoor environment. We thus address this problem in two phases: (1) During the design/construction of the urban/indoor environment we can ensure that sufficient landmarks are placed within the environment. To that end we develop afiltration-based approach for designing strategic placement of landmarks in an environment. (2) We develop a distributed algorithm which a team of robots, with no a priori knowledge of the environment, can use to explore such an environment, construct a topological map requiring no metric/distance information, and use that map to navigate within the environment. This is achieved using a topological representation of the environment (called aLandmark Complex), instead of constructing a complete metric/pixel map. The representation is built by the robot as well as used by them for navigation through a balanced strategy involving exploration and exploitation. We use tools from homology theory for identifying “holes” in the coverage/exploration of the unknown environment and hence guide the robots towards achieving a complete exploration and mapping of the environment. Our simulation results demonstrate the effectiveness of the proposed metric-free topological (simplicial complex) representation in achieving exploration, localization and navigation within the environment.  more » « less
Award ID(s):
2144246
PAR ID:
10491454
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Autonomous Agents and Multi-Agent Systems
Volume:
38
Issue:
1
ISSN:
1387-2532
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advances in data-driven models for grounded language understanding have enabled robots to interpret increasingly complex instructions. Two fundamental limitations of these methods are that most require a full model of the environment to be known a priori, and they attempt to reason over a world representation that is flat and unnecessarily detailed, which limits scalability. Recent semantic mapping methods address partial observability by exploiting language as a sensor to infer a distribution over topological, metric and semantic properties of the environment. However, maintaining a distribution over highly detailed maps that can support grounding of diverse instructions is computationally expensive and hinders real-time human-robot collaboration. We propose a novel framework that learns to adapt perception according to the task in order to maintain compact distributions over semantic maps. Experiments with a mobile manipulator demonstrate more efficient instruction following in a priori unknown environments. 
    more » « less
  2. Contemporary approaches to perception, planning, estimation, and control have allowed robots to operate robustly as our remote surrogates in uncertain, unstructured environments. This progress now creates an opportunity for robots to operate not only in isolation, but also with and alongside humans in our complex environments. Realizing this opportunity requires an efficient and flexible medium through which humans can communicate with collaborative robots. Natural language provides one such medium, and through significant progress in statistical methods for natural-language understanding, robots are now able to interpret a diverse array of free-form navigation, manipulation, and mobile-manipulation commands. However, most contemporary approaches require a detailed, prior spatial-semantic map of the robot’s environment that models the space of possible referents of an utterance. Consequently, these methods fail when robots are deployed in new, previously unknown, or partially-observed environments, particularly when mental models of the environment differ between the human operator and the robot. This paper provides a comprehensive description of a novel learning framework that allows field and service robots to interpret and correctly execute natural-language instructions in a priori unknown, unstructured environments. Integral to our approach is its use of language as a “sensor”—inferring spatial, topological, and semantic information implicit in natural-language utterances and then exploiting this information to learn a distribution over a latent environment model. We incorporate this distribution in a probabilistic, language grounding model and infer a distribution over a symbolic representation of the robot’s action space, consistent with the utterance. We use imitation learning to identify a belief-space policy that reasons over the environment and behavior distributions. We evaluate our framework through a variety of different navigation and mobile-manipulation experiments involving an unmanned ground vehicle, a robotic wheelchair, and a mobile manipulator, demonstrating that the algorithm can follow natural-language instructions without prior knowledge of the environment. 
    more » « less
  3. Billard, A.; Asfour, T.; Khatib, O. (Ed.)
    In this paper, we discuss how to effectively map an underwater structure with a team of robots considering the specific challenges posed by the underwater environment. The overarching goal of this work is to produce high-definition, accurate, photorealistic representation of underwater structures. Due to the many limitations of vision underwater, operating at a distance from the structure results in degraded images that lack details, while operating close to the structure increases the accumulated uncertainty due to the limited viewing area which causes drifting. We propose a multi-robot mapping framework that utilizes two types of robots: proximal observers which map close to the structure and distal observers which provide localization for proximal observers and bird’s-eye-view situational awareness. The paper presents the fundamental components and related current results from real shipwrecks and simulations necessary to enable the proposed framework, including robust state estimation, real-time 3D mapping, and active perception navigation strategies for the two types of robots. Then, the paper outlines interesting research directions and plans to have a completely integrated framework that allows robots to map in harsh environments. 
    more » « less
  4. This paper addresses the problem of robotic exploration of unknown indoor environments with deadlines. Indoor exploration using mobile robots has typically focused on exploring the entire environment without considering deadlines. The objective of the prioritized exploration in this paper is to rapidly compute the geometric layout of an initially unknown environment by exploring key regions of the environment and returning to the home location within a deadline. This prioritized exploration is useful for time-critical and dangerous environments where rapid robot exploration can provide vital information for subsequent operations. For example, firefighters, for whom time is of the essence, can utilize the map generated by this robotic exploration to navigate a building on fire. In our previous work, we showed that a priority-based greedy algorithm can outperform a cost-based greedy algorithm for exploration under deadlines. This paper models the prioritized exploration problem as an Orienteering Problem (OP) and a Profitable Tour Problem (PTP) in an attempt to generate exploration strategies that can explore a greater percentage of the environment in a given amount of time. The paper presents simulation results on multiple graph-based and Gazebo environments. We found that in many cases the priority-based greedy algorithm performs on par or better than the OP and PTP-based algorithms. We analyze the potential reasons for this counterintuitive result. 
    more » « less
  5. Urban environments offer a challenging scenario for autonomous driving. Globally localizing information, such as a GPS signal, can be unreliable due to signal shadowing and multipath errors. Detailed a priori maps of the environment with sufficient information for autonomous navigation typically require driving the area multiple times to collect large amounts of data, substantial post-processing on that data to obtain the map, and then maintaining updates on the map as the environment changes. This paper addresses the issue of autonomous driving in an urban environment by investigating algorithms and an architecture to enable fully functional autonomous driving with limited information. An algorithm to autonomously navigate urban roadways with little to no reliance on an a priori map or GPS is developed. Localization is performed with an extended Kalman filter with odometry, compass, and sparse landmark measure ment updates. Navigation is accomplished by a compass-based navigation control law. Key results from Monte Carlo studies show success rates of urban navigation under different environmental conditions. Experiments validate the simulated results and demonstrate that, for given test conditions, an expected range can be found for a given success rate. 
    more » « less