skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Benthic Flow and Mixing in a Shallow Shoal Grass (Halodule wrightii) Fringe
Mean flow and turbulence measurements collected in a shallow Halodule wrightii shoal grass fringe highlighted significant heterogeneity in hydrodynamic effects over relatively small spatial scales. Experiments were conducted within the vegetation canopy (~4 cm above bottom) for relatively sparse (40% cover) and dense (70% cover) vegetation, with reference measurements collected near the bed above bare sediment. Significant benthic velocity shear was observed at all sample locations, with canopy shear layers that penetrated nearly to the bed at both vegetated sites. Turbulent shear production (P) was balanced by turbulent kinetic energy dissipation (ϵ) at all sample locations (P/ϵ≈1), suggesting that stem-generated turbulence played a minor role in the overall turbulence budget. While the more sparsely vegetated sample site was associated with enhanced channel-to-shore velocity attenuation (71.4 ± 1.0%) relative to flows above bare sediment (51.7 ± 2.2%), unexpectedly strong cross-shore currents were observed nearshore in the dense canopy (VNS), with magnitudes that were nearly twice as large as those measured in the main channel (VCH; VNS/VCH¯ = 1.81 ± 0.08). These results highlight the importance of flow steering and acceleration for within- and across-canopy transport, especially at the scale of individual vegetation patches, with important implications for nutrient and sediment fluxes. Importantly, this work represents one of the first hydrodynamic studies of shoal grass fringes in shallow coastal estuaries, as well as one of the only reports of turbulent mixing within H. wrightii canopies.  more » « less
Award ID(s):
1944880 1617374
NSF-PAR ID:
10249118
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geosciences
Volume:
11
Issue:
3
ISSN:
2076-3263
Page Range / eLocation ID:
115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Laboratory experiments examined the impact of model vegetation on turbulence and resuspension. The turbulent kinetic energy increased with increasing velocity and increasing solid volume fraction, but did not depend on stem diameter. The vegetation‐generated turbulence dominated the total turbulence inside canopies. For the same sediment size, the critical turbulent kinetic energy at which resuspension was initiated was the same for both vegetated and bare beds, which resulted in a critical velocity that decreased with increasing solid volume fraction. Both the critical turbulence and critical velocity for resuspension had no dependence on stem diameter. However, for denser canopies and/or a canopy of smaller stem size, a greater energy slope is required to initiate resuspension. This study provides a way to predict the onset of resuspension in regions with vegetation, an important threshold for sediment transport and landscape evolution.

     
    more » « less
  2. Hydrodynamic experiments were conducted on reference and restored oyster reefs in Mosquito Lagoon, Florida (USA) between June and November 2018. Measurements were collected on intact, degraded, and restored (restoration age: 6month, 2years, 4years) oyster reefs (Crassostrea virginica) to investigate differences in flow and turbulence characteristics related to restoration age. The dataset presented herein includes hydrodynamic observations (timeseries) from experiments conducted on five different oyster reefs (Reference, R-2017, R-2016, R-2014, Degraded), with measurements that include: (1) forcing characteristics (wave heights, water depths, wind speeds, channel velocities), (2) reef characteristics (oyster densities, solid volume fractions), and (3) near-bed flow and turbulence observations (flow speeds, turbulent energy, turbulent kinetic energy dissipation, shear production) from within and above the oyster canopy on sample reefs. Data are presented as timeseries (column vectors) in nine .txt files, with one file for each experiment. 
    more » « less
  3. Abstract

    The need for operational models describing the friction factorfin streams remains undisputed given its utility across a plethora of hydrological and hydraulic applications concerned with shallow inertial flows. For small-scale roughness elements uniformly covering the wetted parameter of a wide channel, the Darcy-Weisbachf = 8(u*/Ub)2is widely used at very high Reynolds numbers, whereu*is friction velocity related to the surface kinematic stress,Ub = Q/Ais bulk velocity,Qis flow rate, andAis cross-sectional area orthogonal to the flow direction. In natural streams, the presence of vegetation introduces additional complications to quantifyingf, the subject of the present work. Turbulent flow through vegetation are characterized by a number of coherent vortical structures: (i) von Karman vortex streets in the lower layers of vegetated canopies, (ii) Kelvin-Helmholtz as well as attached eddies near the vegetation top, and (iii) attached eddies well above the vegetated layer. These vortical structures govern the canonical mixing lengths for momentum transfer and their influence onfis to be derived. The main novelty is that the friction factor of vegetated flow can be expressed asfv = 4Cd(Uv/Ub)2whereUvis the spatially averaged velocity within the canopy volume, andCdis a local drag coefficient per unit frontal area derived to include the aforemontioned layer-wise effects of vortical structures within and above the canopy along with key vegetation properties. The proposed expression is compared with a number of empirical relations derived for vegetation under emergent and submerged conditions as well as numerous data sets covering a wide range of canopy morphology, densities, and rigidity. It is envisaged that the proposed formulation be imminently employed in eco-hydraulics where the interaction between flow and vegetation is being sought.

     
    more » « less
  4. Abstract

    Vegetation provides habitat and nature‐based solutions to coastal flooding and erosion, drawing significant interest in its restoration, which requires an understanding of sediment transport and retention. Laboratory experiments examined the influence of stem diameter and arrangement on bedload sediment transport by considering arrays of different stem diameter and mixed diameters. Bedload transport rate was observed to depend on turbulent kinetic energy, with no dependence on stem diameter, which was shown to be consistent with the impulse model for sediment entrainment. Existing predictors of bedload transport for bare beds, based on bed shear stress, were recast in terms of turbulence. The new turbulence‐based model predicted sediment transport measured in model canopies across a range of conditions drawn from several previous studies. A prediction of turbulence based on biomass and velocity was also described, providing an important step toward predicting turbulence and bedload transport in canopies of real vegetation morphology.

     
    more » « less
  5. Abstract

    Floodplains provide important ecological, hydrological, and geomorphic functions within river corridors. During overbank flows, complex hydrodynamic conditions occur as water exits and re‐enters the channel and interacts with hydraulically rough floodplain vegetation. However, the extent to which floodplain vegetation influences channel‐altering hydrodynamic forces and thus bedform topography and sediment transport is poorly understood. We address this knowledge gap and present the results of flume experiments where we measured bedform topography under varied floodplain vegetation conditions at two overbank flow relative depths. The experiments were conducted in a 1‐m wide meandering compound channel inset in a 15.4 long, 4.9‐m wide basin. The channel bed was a mobile sand‐and‐gravel mixture with a median sediment size of 3.3 mm, and sediment transport occurred only within the channel. We tested bare and vegetated floodplain conditions with 2.7‐cm diameter rigid emergent vegetation elements at spacings of 3.0 and 12.1 units m−2. We performed a moving‐window analysis of topographic surface metrics including skewness, coefficient of variation, and standard deviation, as well as topographic patch analysis of area and contagion to measure changes in bedform heterogeneity as flow depth and vegetation density were varied. Our results show that both greater density vegetation and larger flows can increase bedform topographic heterogeneity. These findings suggest that floodplain vegetation and natural hydrologic regimes that include overbank flows can enhance stream habitat complexity. Designing for the effects of established vegetation conditions and prioritizing floodplain vegetation planting may be useful for river managers striving to achieve successful biomic river restoration.

     
    more » « less