Hydrodynamic experiments were conducted on reference and restored oyster reefs in Mosquito Lagoon, Florida (USA) between June and November 2018. Measurements were collected on intact, degraded, and restored (restoration age: 6month, 2years, 4years) oyster reefs (Crassostrea virginica) to investigate differences in flow and turbulence characteristics related to restoration age. The dataset presented herein includes hydrodynamic observations (timeseries) from experiments conducted on five different oyster reefs (Reference, R-2017, R-2016, R-2014, Degraded), with measurements that include: (1) forcing characteristics (wave heights, water depths, wind speeds, channel velocities), (2) reef characteristics (oyster densities, solid volume fractions), and (3) near-bed flow and turbulence observations (flow speeds, turbulent energy, turbulent kinetic energy dissipation, shear production) from within and above the oyster canopy on sample reefs. Data are presented as timeseries (column vectors) in nine .txt files, with one file for each experiment.
more »
« less
Benthic Flow and Mixing in a Shallow Shoal Grass (Halodule wrightii) Fringe
Mean flow and turbulence measurements collected in a shallow Halodule wrightii shoal grass fringe highlighted significant heterogeneity in hydrodynamic effects over relatively small spatial scales. Experiments were conducted within the vegetation canopy (~4 cm above bottom) for relatively sparse (40% cover) and dense (70% cover) vegetation, with reference measurements collected near the bed above bare sediment. Significant benthic velocity shear was observed at all sample locations, with canopy shear layers that penetrated nearly to the bed at both vegetated sites. Turbulent shear production (P) was balanced by turbulent kinetic energy dissipation (ϵ) at all sample locations (P/ϵ≈1), suggesting that stem-generated turbulence played a minor role in the overall turbulence budget. While the more sparsely vegetated sample site was associated with enhanced channel-to-shore velocity attenuation (71.4 ± 1.0%) relative to flows above bare sediment (51.7 ± 2.2%), unexpectedly strong cross-shore currents were observed nearshore in the dense canopy (VNS), with magnitudes that were nearly twice as large as those measured in the main channel (VCH; VNS/VCH¯ = 1.81 ± 0.08). These results highlight the importance of flow steering and acceleration for within- and across-canopy transport, especially at the scale of individual vegetation patches, with important implications for nutrient and sediment fluxes. Importantly, this work represents one of the first hydrodynamic studies of shoal grass fringes in shallow coastal estuaries, as well as one of the only reports of turbulent mixing within H. wrightii canopies.
more »
« less
- PAR ID:
- 10249118
- Date Published:
- Journal Name:
- Geosciences
- Volume:
- 11
- Issue:
- 3
- ISSN:
- 2076-3263
- Page Range / eLocation ID:
- 115
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Vegetation provides habitat and nature‐based solutions to coastal flooding and erosion, drawing significant interest in its restoration, which requires an understanding of sediment transport and retention. Laboratory experiments examined the influence of stem diameter and arrangement on bedload sediment transport by considering arrays of different stem diameter and mixed diameters. Bedload transport rate was observed to depend on turbulent kinetic energy, with no dependence on stem diameter, which was shown to be consistent with the impulse model for sediment entrainment. Existing predictors of bedload transport for bare beds, based on bed shear stress, were recast in terms of turbulence. The new turbulence‐based model predicted sediment transport measured in model canopies across a range of conditions drawn from several previous studies. A prediction of turbulence based on biomass and velocity was also described, providing an important step toward predicting turbulence and bedload transport in canopies of real vegetation morphology.more » « less
-
Abstract Floodplains provide important ecological, hydrological, and geomorphic functions within river corridors. During overbank flows, complex hydrodynamic conditions occur as water exits and re‐enters the channel and interacts with hydraulically rough floodplain vegetation. However, the extent to which floodplain vegetation influences channel‐altering hydrodynamic forces and thus bedform topography and sediment transport is poorly understood. We address this knowledge gap and present the results of flume experiments where we measured bedform topography under varied floodplain vegetation conditions at two overbank flow relative depths. The experiments were conducted in a 1‐m wide meandering compound channel inset in a 15.4 long, 4.9‐m wide basin. The channel bed was a mobile sand‐and‐gravel mixture with a median sediment size of 3.3 mm, and sediment transport occurred only within the channel. We tested bare and vegetated floodplain conditions with 2.7‐cm diameter rigid emergent vegetation elements at spacings of 3.0 and 12.1 units m−2. We performed a moving‐window analysis of topographic surface metrics including skewness, coefficient of variation, and standard deviation, as well as topographic patch analysis of area and contagion to measure changes in bedform heterogeneity as flow depth and vegetation density were varied. Our results show that both greater density vegetation and larger flows can increase bedform topographic heterogeneity. These findings suggest that floodplain vegetation and natural hydrologic regimes that include overbank flows can enhance stream habitat complexity. Designing for the effects of established vegetation conditions and prioritizing floodplain vegetation planting may be useful for river managers striving to achieve successful biomic river restoration.more » « less
-
null (Ed.)Recent shifts in the presence and abundance of species on shallow Caribbean coral reefs have left octocorals as the dominant functional group on some reefs, creating an “animal forest” with an associated canopy. This transition changes the reef profile potentially affecting flow and sedimentation. We examined the effects of an octocoral forest on the depositional environment on a shallow-water fringing reef system on the south shore of St John, USVI. The depositional environment was characterized as canopy or non-canopy based on octocoral density. The effect of the octocoral canopy on flow and sedimentation was assessed using clod cards and sediment traps at 15 paired locations. The octocoral canopy altered flow resulting in greater levels of turbulence within the canopy. Sediment traps in areas of dense octocoral canopy accumulated greater amounts of sediment, with coarser, more rounded grains. Organic content of sediments collected in the traps was greater within the canopy than outside of it. The increase in turbulence within the canopy was likely due to wave driven oscillatory flow interacting with the octocoral colonies. Sediment traps in the canopy likely had greater sediment accumulation due to both resuspension of sediments from within the canopy and deposition of imported sediments as flow decreased within the canopy. The presence of octocoral canopies and the reworking of sediment within them may affect the success of settling larvae and the evolution of reef structure.more » « less
-
Abstract Aquatic vegetation plays an important role in natural water environments by interacting with the flow and generating turbulence that affects the air‐water and sediment‐water interfacial transfer. Regular and staggered arrays are often set as simplified layouts for vegetation canopy to study both mean flow and turbulence statistics in vegetated flows, which creates uniform spacing between vegetation elements, resulting in preferential flow paths within the array. Such preferential paths can produce local high velocity and strong turbulence, which do not necessarily happen in natural environments where vegetation is randomly distributed. How the randomness of the canopy affects interfacial processes by altering spatial turbulence distribution, which can potentially lead to different turbulence feedback on the interfacial transfer process, remains an open question. This study conducted a series of laboratory experiments in a race‐track flume using rigid cylinders as plant surrogates. Mean and turbulent flow statistics were characterized by horizontal‐ and vertical‐sliced PIV. Based on the measured flow characteristics under different stem diameters and array configurations, we propose a method to quantify the randomness of the vegetation array and update a sediment‐water‐air interfacial gas transfer model with the randomness parameter to improve its accuracy. The updated model agrees well with the dissolved oxygen experimental data from our study and data from existing literature at various scales. The study provides critical insight into water quality management in vegetated channels with improved dissolved oxygen predictions considering vegetation layout as part of the interfacial transfer model.more » « less
An official website of the United States government

