skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Feature Vector Difference based Neural Network and Logistic Regression Models for Authorship Verification
This paper describes the approach we took to create a machine learning model for the PAN 2020 Authorship Verification Task. For each document pair, we extracted stylometric features from the documents and used the absolute difference between the feature vectors as input to our classifier. We created two models: a Logistic Regression Model trained on a small dataset, and a Neural Network based model trained on the large dataset. These models achieved AUCs of 0.939 and 0.953 on the small and large datasets, making them the second-best models on both datasets submitted to the shared task.  more » « less
Award ID(s):
1931005
PAR ID:
10249189
Author(s) / Creator(s):
;
Editor(s):
Cappellato, Linda; Eickhoff, Carsten; Ferro, Nicola; Névéol, Aurélie
Date Published:
Journal Name:
CEUR workshop proceedings
Volume:
2695
ISSN:
1613-0073
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cross-Document Event Coreference (CDEC) annotation is challenging and difficult to scale, resulting in existing datasets being small and lacking diversity. We introduce a new approach leveraging large language models (LLMs) to decontextualize event mentions, by simplifying the document-level annotation task to sentence pairs with enriched context, enabling the creation of Richer EventCorefBank (RECB), a denser and more expressive dataset annotated at faster speed. Decontextualization has been shown to improve annotation speed without compromising quality and to enhance model performance. Our baseline experiment indicates that systems trained on RECB achieve comparable results on the EventCorefBank(ECB+) test set, showing the high quality of our dataset and its generalizability on other CDEC datasets. In addition, our evaluation shows that the strong baseline models are still struggling with RECB comparing to other CDEC datasets, suggesting that the richness and diversity of RECB present significant challenges to current CDEC systems. 
    more » « less
  2. Modern vision models typically rely on fine-tuning general-purpose models pre-trained on large, static datasets. These general-purpose models only capture the knowledge within their pre-training datasets, which are tiny, out-of-date snapshots of the Internet -- where billions of images are uploaded each day. We suggest an alternate approach: rather than hoping our static datasets transfer to our desired tasks after large-scale pre-training, we propose dynamically utilizing the Internet to quickly train a small-scale model that does extremely well on the task at hand. Our approach, called Internet Explorer, explores the web in a self-supervised manner to progressively find relevant examples that improve performance on a desired target dataset. It cycles between searching for images on the Internet with text queries, self-supervised training on downloaded images, determining which images were useful, and prioritizing what to search for next. We evaluate Internet Explorer across several datasets and show that it outperforms or matches CLIP oracle performance by using just a single GPU desktop to actively query the Internet for 30--40 hours. 
    more » « less
  3. This work proposes a novel pose estimation model for object categories that can be effectively transferred to pre-viously unseen environments. The deep convolutional network models (CNN) for pose estimation are typically trained and evaluated on datasets specifically curated for object detection, pose estimation, or 3D reconstruction, which requires large amounts of training data. In this work, we propose a model for pose estimation that can be trained with small amount of data and is built on the top of generic mid-level represen-tations [33] (e.g. surface normal estimation and re-shading). These representations are trained on a large dataset without requiring pose and object annotations. Later on, the predictions are refined with a small CNN neural network that exploits object masks and silhouette retrieval. The presented approach achieves superior performance on the Pix3D dataset [26] and shows nearly 35 % improvement over the existing models when only 25 % of the training data is available. We show that the approach is favorable when it comes to generalization and transfer to novel environments. Towards this end, we introduce a new pose estimation benchmark for commonly encountered furniture categories on challenging Active Vision Dataset [1] and evaluated the models trained on the Pix3D dataset. 
    more » « less
  4. Health-related speech datasets are often small and varied in focus. This makes it difficult to leverage them to effectively support healthcare goals. Robust transfer of linguistic features across different datasets orbiting the same goal carries potential to address this concern. To test this hypothesis, we experiment with domain adaptation (DA) techniques on heterogeneous spoken language data to evaluate generalizability across diverse datasets for a common task: dementia detection. We find that adapted models exhibit better performance across conversational and task-oriented datasets. The feature-augmented DA method achieves a 22% increase in accuracy adapting from a conversational to task-specific dataset compared to a jointly trained baseline. This suggests promising capacity of these techniques to allow for productive use of disparate data for a complex spoken language healthcare task. 
    more » « less
  5. null (Ed.)
    Monocular estimation of 3d human pose has attracted in- creased attention with the availability of large ground-truth motion capture datasets. However, the diversity of training data available is limited and it is not clear to what extent methods generalize outside the specific datasets they are trained on. In this work we carry out a systematic study of the diversity and biases present in specific datasets and its e↵ect on cross-dataset generalization across a compendium of 5 pose datasets. We specifically focus on systematic di↵erences in the distri- bution of camera viewpoints relative to a body-centered coordinate frame. Based on this observation, we propose an auxiliary task of predicting the camera viewpoint in addition to pose. We find that models trained to jointly predict viewpoint and pose systematically show significantly improved cross-dataset generalization. 
    more » « less