Recent advances in self-supervised pre-training of foundation models for natural images have made them a popular choice for various visual systems and applications. Self-supervised strategies are also promising in non-RGB scientific imaging domains such as in biology, medical and satellite imagery, but their broader application is hampered by heterogeneity in channel composition and semantics between relevant datasets: two datasets may contain different numbers of channels, and these may reveal distinct aspects of an object or scene. Recent works on channel adaptive strategies report substantial advantages for those that account for variable channel compositions without sacrificing the ability to jointly encode channels; yet, how these strategies behave at scale remains unclear. We here show that, surprisingly, trained across large-scale datasets, independent-encoding of channels outperforms jointencoding methods by a substantial margin. We validate this result along an extensive set of experiments on various datasets from cell microscopy to geospatial imagery. Our DINO BoC approach sets a new state-of-the-art across challenging benchmarks, including generalization to out-of-distribution tasks and unseen channel combinations. We open-source code and model weights for a new general-purpose feature extractor for fluorescent microscopy
more »
« less
Internet Explorer: Targeted Representation Learning on the Open Web
Modern vision models typically rely on fine-tuning general-purpose models pre-trained on large, static datasets. These general-purpose models only capture the knowledge within their pre-training datasets, which are tiny, out-of-date snapshots of the Internet -- where billions of images are uploaded each day. We suggest an alternate approach: rather than hoping our static datasets transfer to our desired tasks after large-scale pre-training, we propose dynamically utilizing the Internet to quickly train a small-scale model that does extremely well on the task at hand. Our approach, called Internet Explorer, explores the web in a self-supervised manner to progressively find relevant examples that improve performance on a desired target dataset. It cycles between searching for images on the Internet with text queries, self-supervised training on downloaded images, determining which images were useful, and prioritizing what to search for next. We evaluate Internet Explorer across several datasets and show that it outperforms or matches CLIP oracle performance by using just a single GPU desktop to actively query the Internet for 30--40 hours.
more »
« less
- Award ID(s):
- 2024594
- PAR ID:
- 10475151
- Publisher / Repository:
- ICML
- Date Published:
- Journal Name:
- ICML
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Collecting large annotated datasets in Remote Sensing is often expensive and thus can become a major obstacle for training advanced machine learning models. Common techniques of addressing this issue, based on the underlying idea of pre-training the Deep Neural Networks (DNN) on freely available large datasets, cannot be used for Remote Sensing due to the unavailability of such large-scale labeled datasets and the heterogeneity of data sources caused by the varying spatial and spectral resolution of different sensors. Self-supervised learning is an alternative approach that learns feature representation from unlabeled images without using any human annotations. In this paper, we introduce a new method for land cover mapping by using a clustering-based pretext task for self-supervised learning. We demonstrate the effectiveness of the method on two societally relevant applications from the aspect of segmentation performance, discriminative feature representation learning, and the underlying cluster structure. We also show the effectiveness of the active sampling using the clusters obtained from our method in improving the mapping accuracy given a limited budget of annotating.more » « less
-
Pre-trained language models (PLMs) aim to learn universal language representations by conducting self-supervised training tasks on large-scale corpora. Since PLMs capture word semantics in different contexts, the quality of word representations highly depends on word frequency, which usually follows a heavy-tailed distributions in the pre-training corpus. Therefore, the embeddings of rare words on the tail are usually poorly optimized. In this work, we focus on enhancing language model pre-training by leveraging definitions of the rare words in dictionaries (e.g., Wiktionary). To incorporate a rare word definition as a part of input, we fetch its definition from the dictionary and append it to the end of the input text sequence. In addition to training with the masked language modeling objective, we propose two novel self-supervised pre-training tasks on word and sentence-level alignment between input text sequence and rare word definitions to enhance language modeling representation with dictionary. We evaluate the proposed Dict-BERT model on the language understanding benchmark GLUE and eight specialized domain benchmark datasets. Extensive experiments demonstrate that Dict-BERT can significantly improve the understanding of rare words and boost model performance on various NLP downstream tasks.more » « less
-
Data attribution methods play a crucial role in understanding machine learning models, providing insight into which training data points are most responsible for model outputs during deployment. However, current state-of-the-art approaches require a large ensemble of as many as 300,000 models to accurately attribute model predictions. These approaches therefore come at a high computational cost, are memory intensive, and are hard to scale to large models or datasets. In this work, we focus on a minimalist baseline, utilizing the feature space of a backbone pretrained via self-supervised learning to perform data attribution. Our method is model-agnostic and scales easily to large datasets. We show results on CIFAR-10 and ImageNet, achieving strong performance that rivals or outperforms state-of-the-art approaches at a fraction of the compute or memory cost. Contrary to prior work, our results reinforce the intuition that a model's prediction on one image is most impacted by visually similar training samples. Our approach serves as a simple and efficient baseline for data attribution on images.more » « less
-
We propose XVO, a semi-supervised learning method for training generalized monocular Visual Odometry (VO) models with robust off-the-self operation across diverse datasets and settings. In contrast to standard monocular VO approaches which often study a known calibration within a single dataset, XVO efficiently learns to recover relative pose with real-world scale from visual scene semantics, i.e., without relying on any known camera parameters. We optimize the motion estimation model via self-training from large amounts of unconstrained and heterogeneous dash camera videos available on YouTube. Our key contribution is twofold. First, we empirically demonstrate the benefits of semi-supervised training for learning a general-purpose direct VO regression network. Second, we demonstrate multi-modal supervision, including segmentation, flow, depth, and audio auxiliary prediction tasks, to facilitate generalized representations for the VO task. Specifically, we find audio prediction task to significantly enhance the semi-supervised learning process while alleviating noisy pseudo-labels, particularly in highly dynamic and out-of-domain video data. Our proposed teacher network achieves state-of-the-art performance on the commonly used KITTI benchmark despite no multi-frame optimization or knowledge of camera parameters. Combined with the proposed semi-supervised step, XVO demonstrates off-the-shelf knowledge transfer across diverse conditions on KITTI, nuScenes, and Argoverse without fine-tuning.more » « less
An official website of the United States government
