skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Revisiting Design Choices in Proximal Policy Optimization
Proximal Policy Optimization (PPO) is a popular deep policy gradient algorithm. In standard implementations, PPO regularizes policy updates with clipped probability ratios, and parameterizes policies with either continuous Gaussian distributions or discrete Softmax distributions. These design choices are widely accepted, and motivated by empirical performance comparisons on MuJoCo and Atari benchmarks. We revisit these practices outside the regime of current benchmarks, and expose three failure modes of standard PPO. We explain why standard design choices are problematic in these cases, and show that alternative choices of surrogate objectives and policy parameterizations can prevent the failure modes. We hope that our work serves as a reminder that many algorithmic design choices in reinforcement learning are tied to specific simulation environments. We should not implicitly accept these choices as a standard part of a more general algorithm.  more » « less
Award ID(s):
1764033
PAR ID:
10249249
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ArXivorg
Volume:
arXiv:2009.10897
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. III, Hal Daumé ; Singh, Aarti (Ed.)
    Studying the set of exact solutions of a system of polynomial equations largely depends on a single iterative algorithm, known as Buchberger’s algorithm. Optimized versions of this algorithm are crucial for many computer algebra systems (e.g., Mathematica, Maple, Sage). We introduce a new approach to Buchberger’s algorithm that uses reinforcement learning agents to perform S-pair selection, a key step in the algorithm. We then study how the difficulty of the problem depends on the choices of domain and distribution of polynomials, about which little is known. Finally, we train a policy model using proximal policy optimization (PPO) to learn S-pair selection strategies for random systems of binomial equations. In certain domains, the trained model outperforms state-of-the-art selection heuristics in total number of polynomial additions performed, which provides a proof-of-concept that recent developments in machine learning have the potential to improve performance of algorithms in symbolic computation. 
    more » « less
  2. Serverless Function-As-A-Service (FaaS) is an emerging cloud computing paradigm that frees application developers from infrastructure management tasks such as resource provisioning and scaling. To reduce the tail latency of functions and improve resource utilization, recent research has been focused on applying online learning algorithms such as reinforcement learning (RL) to manage resources. Compared to existing heuristics-based resource management approaches, RL-based approaches eliminate humans in the loop and avoid the painstaking generation of heuristics. In this paper, we show that the state-of-The-Art single-Agent RL algorithm (S-RL) suffers up to 4.6x higher function tail latency degradation on multi-Tenant serverless FaaS platforms and is unable to converge during training. We then propose and implement a customized multi-Agent RL algorithm based on Proximal Policy Optimization, i.e., multi-Agent PPO (MA-PPO). We show that in multi-Tenant environments, MA-PPO enables each agent to be trained until convergence and provides online performance comparable to S-RL in single-Tenant cases with less than 10% degradation. Besides, MA-PPO provides a 4.4x improvement in S-RL performance (in terms of function tail latency) in multi-Tenant cases. 
    more » « less
  3. The actual failure times of individual components are usually unavailable in many applications. Instead, only aggregate failure-time data are collected by actual users, due to technical and/or economic reasons. When dealing with such data for reliability estimation, practitioners often face the challenges of selecting the underlying failure-time distributions and the corresponding statistical inference methods. So far, only the exponential, normal, gamma and inverse Gaussian distributions have been used in analyzing aggregate failure-time data, due to these distributions having closed-form expressions for such data. However, the limited choices of probability distributions cannot satisfy extensive needs in a variety of engineering applications. PHase-type (PH) distributions are robust and flexible in modeling failure-time data, as they can mimic a large collection of probability distributions of non-negative random variables arbitrarily closely by adjusting the model structures. In this article, PH distributions are utilized, for the first time, in reliability estimation based on aggregate failure-time data. A Maximum Likelihood Estimation (MLE) method and a Bayesian alternative are developed. For the MLE method, an Expectation-Maximization algorithm is developed for parameter estimation, and the corresponding Fisher information is used to construct the confidence intervals for the quantities of interest. For the Bayesian method, a procedure for performing point and interval estimation is also introduced. Numerical examples show that the proposed PH-based reliability estimation methods are quite flexible and alleviate the burden of selecting a probability distribution when the underlying failure-time distribution is general or even unknown. 
    more » « less
  4. The Prophet Inequality and Pandora's Box problems are fundamental stochastic problem with applications in Mechanism Design, Online Algorithms, Stochastic Optimization, Optimal Stopping, and Operations Research. A usual assumption in these works is that the probability distributions of the n underlying random variables are given as input to the algorithm. Since in practice these distributions need to be learned under limited feedback, we initiate the study of such stochastic problems in the Multi-Armed Bandits model. In the Multi-Armed Bandits model we interact with n unknown distributions over T rounds: in round t we play a policy x(t) and only receive the value of x(t) as feedback. The goal is to minimize the regret, which is the difference over T rounds in the total value of the optimal algorithm that knows the distributions vs. the total value of our algorithm that learns the distributions from the limited feedback. Our main results give near-optimal Õ (poly (n) √T) total regret algorithms for both Prophet Inequality and Pandora's Box. Our proofs proceed by maintaining confidence intervals on the unknown indices of the optimal policy. The exploration-exploitation tradeoff prevents us from directly refining these confidence intervals, so the main technique is to design a regret upper bound function that is learnable while playing low-regret Bandit policies. 
    more » « less
  5. Social media platforms make trade-offs in their design and policy decisions to attract users and stand out from other platforms. These decisions are influenced by a number of considerations, e.g. what kinds of content moderation to deploy or what kinds of resources a platform has access to. Their choices play into broader political tensions; social media platforms are situated within a social context that frames their impact, and they can have politics through their design that enforce power structures and serve existing authorities. We turn to Pillowfort, a small social media platform, to examine these political tensions as a case study. Using a discourse analysis, we examine public discussion posts between staff and users as they negotiate the site's development over a period of two years. Our findings illustrate the tensions in navigating the politics that users bring with them from previous platforms, the difficulty of building a site's unique identity and encouraging commitment, and examples of how design decisions can both foster and break trust with users. Drawing from these findings, we discuss how the success and failure of new social media platforms are impacted by political influences on design and policy decisions. 
    more » « less