skip to main content

This content will become publicly available on April 5, 2023

Title: Reinforcement learning for resource management in multi-tenant serverless platforms
Serverless Function-As-A-Service (FaaS) is an emerging cloud computing paradigm that frees application developers from infrastructure management tasks such as resource provisioning and scaling. To reduce the tail latency of functions and improve resource utilization, recent research has been focused on applying online learning algorithms such as reinforcement learning (RL) to manage resources. Compared to existing heuristics-based resource management approaches, RL-based approaches eliminate humans in the loop and avoid the painstaking generation of heuristics. In this paper, we show that the state-of-The-Art single-Agent RL algorithm (S-RL) suffers up to 4.6x higher function tail latency degradation on multi-Tenant serverless FaaS platforms and is unable to converge during training. We then propose and implement a customized multi-Agent RL algorithm based on Proximal Policy Optimization, i.e., multi-Agent PPO (MA-PPO). We show that in multi-Tenant environments, MA-PPO enables each agent to be trained until convergence and provides online performance comparable to S-RL in single-Tenant cases with less than 10% degradation. Besides, MA-PPO provides a 4.4x improvement in S-RL performance (in terms of function tail latency) in multi-Tenant cases.
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
EuroMLSys 2022 - Proceedings of the 2nd European Workshop on Machine Learning and Systems
Page Range or eLocation-ID:
20 to 28
Sponsoring Org:
National Science Foundation
More Like this
  1. The increased use of micro-services to build web applications has spurred the rapid growth of Function-as-a-Service (FaaS) or serverless computing platforms. While FaaS simplifies provisioning and scaling for application developers, it introduces new challenges in resource management that need to be handled by the cloud provider. Our analysis of popular serverless workloads indicates that schedulers need to handle functions that are very short-lived, have unpredictable arrival patterns, and require expensive setup of sandboxes. The challenge of running a large number of such functions in a multi-tenant cluster makes existing scheduling frameworks unsuitable. We present Archipelago, a platform that enables low latency request execution in a multi-tenant serverless setting. Archipelago views each application as a DAG of functions, and every DAG in associated with a latency deadline. Archipelago achieves its per-DAG request latency goals by: (1) partitioning a given cluster into a number of smaller worker pools, and associating each pool with a semi-global scheduler (SGS), (2) using a latency-aware scheduler within each SGS along with proactive sandbox allocation to reduce overheads, and (3) using a load balancing layer to route requests for different DAGs to the appropriate SGS, and automatically scale the number of SGSs per DAG. Our testbed resultsmore »show that Archipelago meets the latency deadline for more than 99% of realistic application request workloads, and reduces tail latencies by up to 36X compared to state-of-the-art serverless platforms.« less
  2. Function-as-a-Service (FaaS) is becoming an increasingly popular cloud-deployment paradigm for serverless computing that frees application developers from managing the infrastructure. At the same time, it allows cloud providers to assert control in workload consolidation, i.e., co-locating multiple containers on the same server, thereby achieving higher server utilization, often at the cost of higher end-to-end function request latency. Interestingly, a key aspect of serverless latency management has not been well studied: the trade-off between application developers' latency goals and the FaaS providers' utilization goals. This paper presents a multi-faceted, measurement-driven study of latency variation in serverless platforms that elucidates this trade-off space. We obtained production measurements by executing FaaS benchmarks on IBM Cloud and a private cloud to study the impact of workload consolidation, queuing delay, and cold starts on the end-to-end function request latency. We draw several conclusions from the characterization results. For example, increasing a container's allocated memory limit from 128 MB to 256 MB reduces the tail latency by 2× but has 1.75× higher power consumption and 59% lower CPU utilization.
  3. null (Ed.)
    The microservice architecture is a popular software engineering approach for building flexible, large-scale online services. Serverless functions, or function as a service (FaaS), provide a simple programming model of stateless functions which are a natural substrate for implementing the stateless RPC handlers of microservices, as an alternative to containerized RPC servers. However, current serverless platforms have millisecond-scale runtime overheads, making them unable to meet the strict sub-millisecond latency targets required by existing interactive microservices. We present Nightcore, a serverless function runtime with microsecond-scale overheads that provides container-based isolation between functions. Nightcore’s design carefully considers various factors having microsecond-scale overheads, including scheduling of function requests, communication primitives, threading models for I/O, and concurrent function executions. Nightcore currently supports serverless functions written in C/C++, Go, Node.js, and Python. Our evaluation shows that when running latency-sensitive interactive microservices, Nightcore achieves 1.36×–2.93× higher throughput and up to 69% reduction in tail latency.
  4. Current serverless Function-as-a-Service (FaaS) platforms generally use simple, classic scheduling algorithms for distributing function invocations while ignoring FaaS characteristics such as rapid changes in resource utilization and the freeze-thaw life cycle. In this paper, we present FaaSRank, a function scheduler for serverless FaaS platforms based on information monitored from servers and functions. FaaSRank automatically learns scheduling policies through experience using reinforcement learning (RL) and neural networks supported by our novel Score-Rank-Select architecture. We implemented FaaSRank in Apache OpenWhisk, an open source FaaS platform, and evaluated performance against other baseline schedulers including OpenWhisk's default scheduler on two 13-node OpenWhisk clusters. For training and evaluation, we adapted real-world serverless workload traces provided by Microsoft Azure. For the duration of test workloads, FaaSRank sustained on average a lower number of inflight invocations 59.62 % and 70.43 % as measured on two clusters respectively. We also demonstrate the generalizability of FaaSRank for any workload. When trained using a composite of 50 episodes each for 10 distinct random workloads, FaaSRank reduced average function completion time by 23.05% compared to OpenWhisk's default scheduler.
  5. Serverless applications represented as DAGs have been growing in popularity. For many of these applications, it would be useful to estimate the end-to-end (E2E) latency and to allocate resources to individual functions so as to meet probabilistic guarantees for the E2E latency. This goal has not been met till now due to three fundamental challenges. The first is the high variability and correlation in the execution time of individual functions, the second is the skew in execution times of the parallel invocations, and the third is the incidence of cold starts. In this paper, we introduce ORION to achieve these goals. We first analyze traces from a production FaaS infrastructure to identify three characteristics of serverless DAGs. We use these to motivate and design three features. The first is a performance model that accounts for runtime variabilities and dependencies among functions in a DAG. The second is a method for co-locating multiple parallel invocations within a single VM thus mitigating content-based skew among these invocations. The third is a method for pre-warming VMs for subsequent functions in a DAG with the right look-ahead time. We integrate these three innovations and evaluate ORION on AWS Lambda with three serverless DAG applications.more »Our evaluation shows that compared to three competing approaches, ORION achieves up to 90% lower P95 latency without increasing $ cost, or up to 53% lower $ cost without increasing tail latency.« less