skip to main content


Title: Efficient Data Management for Intelligent Urban Mobility Systems
Modern intelligent urban mobility applications are underpinned by large-scale, multivariate, spatiotemporal data streams. Working with this data presents unique challenges of data management, processing and presentation that is often overlooked by researchers. Therefore, in this work we present an integrated data management and processing framework for intelligent urban mobility systems currently in use by our partner transit agencies. We discuss the available data sources and outline our cloud-centric data management and stream processing architecture built upon open-source publish-subscribe and NoSQL data stores. We then describe our data-integrity monitoring methods. We then present a set of visualization dashboards designed for our transit agency partners. Lastly, we discuss how these tools are currently being used for AI-driven urban mobility applications that use these tools.  more » « less
Award ID(s):
2029952
NSF-PAR ID:
10249351
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Workshop on AI for Urban Mobility at the 35th AAAI Conference on Artificial Intelligence (AAAI-21)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Modern intelligent urban mobility applications are underpinned by large-scale, multivariate, spatiotemporal data streams. Working with this data presents unique challenges of data management, processing and presentation that is often overlooked by researchers. Therefore, in this work we present an integrated data management and processing framework for intelligent urban mobility systems currently in use by our partner transit agencies. We discuss the available data sources and outline our cloud-centric data management and stream processing architecture built upon open-source publish-subscribe and NoSQL data stores. We then describe our data-integrity monitoring methods. We then present a set of visualization dashboards designed for our transit agency partners. Lastly, we discuss how these tools are currently being used for AI-driven urban mobility applications that use these tools. 
    more » « less
  2. Tarolli, P. ; Mudd, S. (Ed.)
    High-resolution topography (HRT) is a powerful observational tool for studying the Earth's surface, vegetation, and urban landscapes, with broad scientific, engineering, and education-based applications. Submeter resolution imaging is possible when collected with laser and photogrammetric techniques using the ground, air, and space-based platforms. Open access to these data and a cyberinfrastructure platform that enables users to discover, manage, share, and process then increases the impact of investments in data collection and catalyzes scientific discovery. Furthermore, open and online access to data enables broad interdisciplinary use of HRT across academia and in communities such as education, public agencies, and the commercial sector. OpenTopography, supported by the US National Science Foundation, aims to democratize access to Earth science-oriented, HRT data and processing tools. We utilize cyberinfrastructure, including large-scale data management, high-performance computing, and service-oriented architectures to provide efficient web-based visualization and access to large, HRT datasets. OT colocates data with processing tools to enable users to quickly access custom data and derived products for their application, with the ultimate goal of making these powerful data easier to use. OT's rapidly growing data holdings currently include 283 lidar and photogrammetric, point cloud datasets (>1.2 trillion points) covering 236,364km2. As a testament to OT's success, more than 86,000 users have processed over 5 trillion lidar points. This use has resulted in more than 290 peer-reviewed publications across numerous academic domains including Earth science, geography, computer science, and ecology. 
    more » « less
  3. New rideshare and shared-mobility services have transformed urban mobility in recent years. Therefore, transit agencies are looking for ways to adapt to this rapidly changing environment. In this space, ridepooling has the potential to improve efficiency and reduce costs by allowing users to share rides in high-capacity vehicles and vans. Most transit agencies already operate various ridepooling services including microtransit and paratransit. However, the objectives and constraints for implementing these services vary greatly between agencies. This brings multiple challenges. First, off-the-shelf ridepooling formulations must be adapted for real-world conditions and constraints. Second, the lack of modular and reusable software makes it hard to implement and evaluate new ridepooling algorithms and approaches in real-world settings. Therefore, we propose an on-demand transportation scheduling software for microtransit and paratransit services. This software is aimed at transit agencies looking to incorporate state-of-the-art rideshare and ridepooling algorithms in their everyday operations. We provide management software for dispatchers and mobile applications for drivers and users. Lastly, we discuss the challenges in adapting state-of-the-art methods to real-world operations. 
    more » « less
  4. Abstract

    Recent advancements in artificial intelligence (AI) have seen the emergence of smart video surveillance (SVS) in many practical applications, particularly for building safer and more secure communities in our urban environments. Cognitive tasks, such as identifying objects, recognizing actions, and detecting anomalous behaviors, can produce data capable of providing valuable insights to the community through statistical and analytical tools. However, artificially intelligent surveillance systems design requires special considerations for ethical challenges and concerns. The use and storage of personally identifiable information (PII) commonly pose an increased risk to personal privacy. To address these issues, this paper identifies the privacy concerns and requirements needed to address when designing AI-enabled smart video surveillance. Further, we propose the first end-to-end AI-enabled privacy-preserving smart video surveillance system that holistically combines computer vision analytics, statistical data analytics, cloud-native services, and end-user applications. Finally, we propose quantitative and qualitative metrics to evaluate intelligent video surveillance systems. The system shows the 17.8 frame-per-second (FPS) processing in extreme video scenes. However, considering privacy in designing such a system results in preferring the pose-based algorithm to the pixel-based one. This choice resulted in dropping accuracy in both action and anomaly detection tasks. The results drop from 97.48% to 73.72% in anomaly detection and 96% to 83.07% in the action detection task. On average, the latency of the end-to-end system is 36.1 seconds.

     
    more » « less
  5. Machine learning (ML) classifiers are widely adopted in the learning-enabled components of intelligent Cyber-physical Systems (CPS) and tools used in designing integrated circuits. Due to the impact of the choice of hyperparameters on an ML classifier performance, hyperparameter tuning is a crucial step for application success. However, the practical adoption of existing hyperparameter tuning frameworks in production is hindered due to several factors such as inflexible architecture, limitations of search algorithms, software dependencies, or closed source nature. To enable state-of-the-art hyperparameter tuning in production, we propose the design of a lightweight library (1) having a flexible architecture facilitating usage on arbitrary systems, and (2) providing parallel optimization algorithms supporting mixed parameters (continuous, integer, and categorical), handling runtime failures, and allowing combined classifier selection and hyperparameter tuning (CASH). We present Mango, a black-box optimization library, to realize the proposed design. Mango is currently used in production at Arm for more than 25 months and is available open-source (https://github.com/ARM-software/mango). Our evaluation shows that Mango outperforms other black-box optimization libraries in tuning hyperparameters of ML classifiers having mixed param-eter search spaces. We discuss two use cases of Mango deployed in production at Arm, highlighting its flexible architecture and ease of adoption. The first use case trains ML classifiers on the Dask cluster using Mango to find bugs in Arm's integrated circuits designs. As a second use case, we introduce an AutoML framework deployed on the Kubernetes cluster using Mango. Finally, we present the third use-case of Mango in enabling neural architecture search (NAS) to transfer deep neural networks to TinyML platforms (microcontroller class devices) used by CPS/IoT applications. 
    more » « less