skip to main content

Title: Synthetic ionophores as non-resistant antibiotic adjuvants
Antimicrobial resistance is a world-wide health care crisis. New antimicrobials must both exhibit potency and thwart the ability of bacteria to develop resistance to them. We report the use of synthetic ionophores as a new approach to developing non-resistant antimicrobials and adjuvants. Most studies involving amphiphilic antimicrobials have focused on either developing synthetic amphiphiles that show ion transport, or developing non-cytotoxic analogs of such peptidic amphiphiles as colistin. We have rationally designed, prepared, and evaluated crown ether-based synthetic ionophores (‘hydraphiles’) that show selective ion transport through bilayer membranes and are toxic to bacteria. We report here that hydraphiles exhibit a broad range of antimicrobial properties and that they function as adjuvants in concert with FDA-approved antibiotics against multi-drug resistant (MDR) bacteria. Studies described herein demonstrate that benzyl C 14 hydraphile (BC 14 H) shows high efficacy as an antimicrobial. BC 14 H, at sub-MIC concentrations, forms aggregates of ∼200 nm that interact with the surface of bacteria. Surface-active BC 14 H then localizes in the bacterial membranes, which increases their permeability. As a result, antibiotic influx into the bacterial cytosol increases in the presence of BC n Hs. Efflux pump inhibition and accumulation of substrate was also observed, likely due more » to disruption of the cation gradient. As a result, BC 14 H recovers the activity of norfloxacin by 128-fold against resistant Staphylococcus aureus . BC 14 H shows extremely low resistance development and is less cytotoxic than colistin. Overall, synthetic ionophores represent a new scaffold for developing efficient and non-resistant antimicrobial-adjuvants. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
RSC Advances
Page Range or eLocation-ID:
2217 to 2230
Sponsoring Org:
National Science Foundation
More Like this
  1. As we are on the cusp of the “post-antibiotic” era due to rapid spread of drug resistant bacteria, there is an urgent need for new antimicrobials that are not susceptible to bacterial resistance mechanisms. In this review, we will discuss the recent development of “polymer therapeutics” with antimicrobial activity. Learning from host-defence peptides, we propose the biomimetic design of synthetic polymers to target bacterial cell membranes, which act by compromising the membrane integrity. The discussion is extended to the future challenges and opportunities of antimicrobial polymers for clinical applications.
  2. Hydraphiles are synthetic amphiphiles that form pores in bilayer membranes. A study was undertaken to determine if the formation of pores could assist the penetration of antibiotics into bacteria. The disruption of ion homeostasis by the pore-formers leads to microbial toxicity. Co-administration of hydraphiles at concentration ≤ ½ MIC and antimicrobials to E. coli or P. aeruginosa showed potency enhancements of up to 30-fold. A possible mechanism is the enhancement of antibiotic influx owing to membrane disruption and/or altering the ion balance within the bacterial cells.
  3. Engineered nanoparticles are incorporated into numerous emerging technologies because of their unique physical and chemical properties. Many of these properties facilitate novel interactions, including both intentional and accidental effects on biological systems. Silver-containing particles are widely used as antimicrobial agents and recent evidence indicates that bacteria rapidly become resistant to these nanoparticles. Much less studied is the chronic exposure of bacteria to particles that were not designed to interact with microorganisms. For example, previous work has demonstrated that the lithium intercalated battery cathode nanosheet, nickel manganese cobalt oxide (NMC), is cytotoxic and causes a significant delay in growth of Shewanellamore »oneidensis MR-1 upon acute exposure. Here, we report that S. oneidensis MR-1 rapidly adapts to chronic NMC exposure and is subsequently able to survive in much higher concentrations of these particles, providing the first evidence of permanent bacterial resistance following exposure to nanoparticles that were not intended as antibacterial agents. We also found that when NMC-adapted bacteria were subjected to only the metal ions released from this material, their specific growth rates were higher than when exposed to the nanoparticle. As such, we provide here the first demonstration of bacterial resistance to complex metal oxide nanoparticles with an adaptation mechanism that cannot be fully explained by multi-metal adaptation. Importantly, this adaptation persists even after the organism has been grown in pristine media for multiple generations, indicating that S. oneidensis MR-1 has developed permanent resistance to NMC.« less
  4. Due to the rapid mutation of pathogenic microorganisms, drug-resistant superbugs have evolved. Antimicrobial-resistant germs may share their resistance genes with other germs, making them untreatable. The search for more combative antibiotic compounds has led researchers to explore metal-based strategies centered on perturbing the bioavailability of essential metals in microbes and examining the therapeutic potential of metal complexes. Given the limited knowledge on the application of titanium(IV), in this work, eight Ti(IV) complexes and some of their corresponding ligands were screened by the Community for Open Antimicrobial Drug Discovery for antimicrobial activity. The compounds were selected for evaluation because of theirmore »low cytotoxic/antiproliferative behavior against a human non-cancer cell line. At pH 7.4, these compounds vary in terms of their solution stability and ligand exchange lability; therefore, an assessment of their solution behavior provides some insight regarding the importance of the identity of the metal compound to the antimicrobial therapeutic potential. Only one compound, Ti(deferasirox)2, exhibited promising inhibitory activity against the Gram-positive bacteria methicillin-resistant Staphylococcus aureus and minimal toxicity against human cells. The ability of this compound to undergo transmetalation with labile Fe(III) sources and, as a consequence, inhibit Fe bioavailability and ribonucleotide reductase is evaluated as a possible mechanism for its antibiotic effect.« less
  5. ABSTRACT Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to orchestrate collective behaviors. QS relies on the cell-density-dependent production, accumulation, and receptor-mediated detection of extracellular signaling molecules called autoinducers (AIs). Gram-negative bacteria commonly use N -acyl homoserine lactones (AHLs) as their AIs, and they are detected by LuxR-type receptors. Often, LuxR-type receptors are insoluble when not bound to a cognate AI. In this report, we show that LuxR-type receptors are encoded on phage genomes, and in the cases we tested, the phage LuxR-type receptors bind to and are solubilized specifically by the AHL AI produced bymore »the host bacterium. We do not yet know the viral activities that are controlled by these phage QS receptors; however, our observations, coupled with recent reports, suggest that their occurrence is more widespread than previously appreciated. Using receptor-mediated detection of QS AIs could enable phages to garner information concerning the population density status of their bacterial hosts. We speculate that such information can be exploited by phages to optimize the timing of execution of particular steps in viral infection. IMPORTANCE Bacteria communicate with chemical signal molecules to regulate group behaviors in a process called quorum sensing (QS). In this report, we find that genes encoding receptors for Gram-negative bacterial QS communication molecules are present on genomes of viruses that infect these bacteria. These viruses are called phages. We show that two phage-encoded receptors, like their bacterial counterparts, bind to the communication molecule produced by the host bacterium, suggesting that phages can “listen in” on their bacterial hosts. Interfering with bacterial QS and using phages to kill pathogenic bacteria represent attractive possibilities for development of new antimicrobials to combat pathogens that are resistant to traditional antibiotics. Our findings of interactions between phages and QS bacteria need consideration as new antimicrobial therapies are developed.« less