This paper studies distributed submodular optimization subject to partition matroid. We work in the value oracle model where the only access of the agents to the utility function is through a black box that returns the utility function value. The agents are communicating over a connected undirected graph and have access only to their own strategy set. As known in the literature, submodular maximization subject to matroid constraints is NP-hard. Hence, our objective is to propose a polynomial-time distributed algorithm to obtain a suboptimal solution with guarantees on the optimality bound. Our proposed algorithm is based on a distributed stochastic gradient ascent scheme built on the multilinear-extension of the submodular set function. We use a maximum consensus protocol to minimize the inconsistency of the shared information over the network caused by delay in the flow of information while solving for the fractional solution of the multilinear extension model. Furthermore, we propose a distributed framework of finding a set solution using the fractional solution. We show that our distributed algorithm results in a strategy set that when the team objective function is evaluated at worst case the objective function value is in 1−1/e−O(1/T) of the optimal solution in the value oracle model where T is the number of communication instances of the agents. An example demonstrates our results. 
                        more » 
                        « less   
                    
                            
                            Fair Caching Networks
                        
                    
    
            We study fair content allocation strategies in caching networks through a utility-driven framework, where each request achieves a utility of its caching gain rate. The resulting problem is NP-hard. Submodularity allows us to devise a deterministic allocation strategy with an optimality guarantee factor arbitrarily close to 1-1/e. When 0 < α ≤ 1, we further propose a randomized strategy that attains an improved optimality guarantee, (1 - 1/e)1-α, in expectation. Through extensive simulations over synthetic and real-world network topologies, we evaluate the performance of our proposed strategies and discuss the effect of fairness. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10249544
- Date Published:
- Journal Name:
- ACM SIGMETRICS Performance Evaluation Review
- Volume:
- 48
- Issue:
- 3
- ISSN:
- 0163-5999
- Page Range / eLocation ID:
- 89 to 90
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            To meet the increasing demands of next-generation cellular networks (e.g., 6G), advanced networking technologies must be incorporated. On one hand, the Fog Radio Access Network (F-RAN), has been proposed as an enhancement to the Cloud Radio Access Network (C-RAN). On the other hand, efficient network architectures, such as Named Data Networking (NDN), have been recognized as prominent Future Internet candidates. Nevertheless, the interplay between F-RAN and NDN warrants further investigation. In this paper, we propose an NDN-enabled F-RAN architecture featuring a strategy for distributed in-network caching. Through a simulation study, we demonstrate the superiority of the proposed in-network caching strategy in comparison with baseline caching strategies in terms of network resource utilization, cache hits, and front haul channel usage.more » « less
- 
            null (Ed.)We study the problem of fair allocation for indivisible goods. We use the maximin share paradigm introduced by Budish [Budish E (2011) The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes. J. Political Econom. 119(6):1061–1103.] as a measure of fairness. Kurokawa et al. [Kurokawa D, Procaccia AD, Wang J (2018) Fair enough: Guaranteeing approximate maximin shares. J. ACM 65(2):8.] were the first to investigate this fundamental problem in the additive setting. They showed that in delicately constructed examples, not everyone can obtain a utility of at least her maximin value. They mitigated this impossibility result with a beautiful observation: no matter how the utility functions are made, we always can allocate the items to the agents to guarantee each agent’s utility is at least 2/3 of her maximin value. They left open whether this bound can be improved. Our main contribution answers this question in the affirmative. We improve their approximation result to a 3/4 factor guarantee.more » « less
- 
            We study an online caching problem in which requests can be served by a local cache to avoid retrieval costs from a remote server. The cache can update its state after a batch of requests and store an arbitrarily small fraction of each file. We study no-regret algorithms based on Online Mirror Descent (OMD) strategies. We show that bounds for the regret crucially depend on the diversity of the request process, provided by the diversity ratio R/h , where R is the size of the batch and h is the maximum multiplicity of a request in a given batch. We characterize the optimality of OMD caching policies w.r.t. regret under different diversity regimes. We also prove that, when the cache must store the entire file, rather than a fraction, OMD strategies can be coupled with a randomized rounding scheme that preserves regret guarantees, even when update costs cannot be neglected. We provide a formal characterization of the rounding problem through optimal transport theory, and moreover we propose a computationally efficient randomized rounding scheme.more » « less
- 
            Abstract In current infrastructure-as-a service (IaaS) cloud services, customers are charged for the usage of computing/storage resources only, but not the network resource. The difficulty lies in the fact that it is nontrivial to allocate network resource to individual customers effectively, especially for short-lived flows, in terms of both performance and cost, due to highly dynamic environments by flows generated by all customers. To tackle this challenge, in this paper, we propose an end-to-end Price-Aware Congestion Control Protocol (PACCP) for cloud services. PACCP is a network utility maximization (NUM) based optimal congestion control protocol. It supports three different classes of services (CoSes), i.e., best effort service (BE), differentiated service (DS), and minimum rate guaranteed (MRG) service. In PACCP, the desired CoS or rate allocation for a given flow is enabled by properly setting a pair of control parameters, i.e., a minimum guaranteed rate and a utility weight, which in turn, determines the price paid by the user of the flow. Two pricing models, i.e., a coarse-grained VM-Based Pricing model (VBP) and a fine-grained Flow-Based Pricing model (FBP), are proposed. The optimality of PACCP is verified by both large scale simulation and small testbed implementation. The price-performance consistency of PACCP are evaluated using real datacenter workloads. The results demonstrate that PACCP provides minimum rate guarantee, high bandwidth utilization and fair rate allocation, commensurate with the pricing models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    