skip to main content


Title: Reversible Doping and Photo Patterning of Polymer Nanowires
Abstract

Recent development of dopant induced solubility control (DISC) patterning of polymer semiconductors has enabled direct‐write optical patterning of poly‐3‐hexylthiophene (P3HT) with diffraction limited resolution. Here, the optical DISC patterning technique to the most simple circuit element, a wire, is applied. Optical patterning of P3HT and P3HT doped with the molecular dopant 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) wires with dimensions of 20–70 nm thickness, 200–900 nm width, and 40 μm length is demonstrated. In addition, optical patterning of wire patterns like “L” bends and “T” junctions without changing the diameter or thickness of the wires at the junctions is demonstrated. The wires themselves show up to 0.034 S cm‐1conductance when sequentially doped. It is also demonstrated that a P3HT nanowire can be doped, de‐doped, and re‐doped from solution without changing the dimension of the wire. The combined abilities to optically pattern and reversibly dope a polymer semiconductor represents a full suite of patterning steps equivalent to photolithography for inorganic semiconductors.

 
more » « less
Award ID(s):
1710737 1636385
NSF-PAR ID:
10449608
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
6
Issue:
10
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a critical need to develop a method to pattern semiconducting polymers for device applications on the sub-micrometer scale. Dopant induced solubility control (DISC) patterning is a recently published method for patterning semiconductor polymers that has demonstrated sub-micron resolution. DISC relies on the sequential addition of molecular dopants (here 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ)) to the conjugated polymer. In doped areas, the conjugated polymer is protected from dissolution while in undoped areas, the polymer dissolves into solution. Here we examine factors that affect the resolution of the developed pattern. Two factors are determined to be critical to pattern resolution, the initial crystallinity of the polymer, here poly(3-hexylthiophene) (P3HT), and the quality of the development solvent. We find that dopants diffuse more readily in highly crystalline films than in amorphous films of P3HT and that dopant diffusion reduces the fidelity of the resulting pattern. We also find that the choice of development solvent affects both the fidelity of the pattern and dopant distribution within the patterned polymer domains. Finally, we show that a dopant that diffuses more slowly than F4TCNQ in the P3HT film can be used to pattern the film with higher fidelity. These results together provide a road map for optimizing additive DISC patterning for any polymer/dopant pair. 
    more » « less
  2. Abstract

    Carrier doping is the basis of the modern semiconductor industry. Great efforts are put into the control of carrier doping for 2D semiconductors, especially the layered transition metal dichalcogenides. Here, the direct laser patterning of WSe2devices via light‐induced hole doping is systematically studied. By changing the laser power, scan speed, and the number of irradiation times, different levels of hole doping can be achieved in the pristine electron‐transport‐dominated WSe2, without obvious sample thinning. Scanning transmission electron microscopy characterization reveals that the oxidation of the laser‐radiated WSe2is the origin of the carrier doping. Photocurrent mapping shows that after the same amount of laser irradiation, with increasing thickness, the laser patterned PN junction changes from the pure lateral to the vertical‐lateral hybrid structure, accompanied by the decrease in the open circuit voltage. The vertical‐lateral hybrid PN junction can be tuned to a pure lateral one by further irradiation, showing possibilities to construct complex junction profiles. Moreover, a NOR gate circuit is demonstrated by direct patterning of p‐doped channels using laser irradiation without introducing passive layers and metal electrodes with different work functions. This method simplifies device fabrication procedures and shows a promising future in large scale logic circuit applications.

     
    more » « less
  3. Doping is required to increase the electrical conductivity of organic semiconductors for uses in electronic and energy conversion devices. The limited number of commonly used p-type dopants suggests that new dopants or doping mechanisms could improve the efficiency of doping and provide new means for processing doped polymers. Drawing on Lewis acid–base pair chemistry, we combined Lewis acid dopant B(C 6 F 5 ) 3 (BCF) with the weak Lewis base benzoyl peroxide (BPO). The detailed behavior of p-type doping of the model polymer poly(3-hexylthiophene) (P3HT) with this Lewis acid–base pair in solution was examined. Solution 19 F-NMR spectra confirmed the formation of the expected counterion, as well as side products from reactions with solvent. BCF : BPO was also found to efficiently dope a range of semiconducting polymers with varying chemical structures demonstrating that the BCF : BPO combination has an effective electron affinity of at least 5.3 eV. In thin films of regioregular P3HT cast from the doped solutions, delocalized polarons formed due to the large counterions leading to a large polaron-counterion distance. At and above 0.2 eq. BCF : BPO doping, amorphous areas of the film became doped, disrupting the structural order of the films. Despite the change in structural order, thin films of regioregular P3HT doped with 0.2 eq. BCF : BPO had a conductivity of 25 S cm −1 . This study demonstrates the effectiveness of a two-component Lewis acid–base doping mechanism and suggests additional two-component Lewis acid–base chemistries should be explored. 
    more » « less
  4. Abstract

    The ability to control the density and spatial distribution of substitutional dopants in semiconductors is crucial for achieving desired physicochemical properties. Substitutional doping with adjustable doping levels has been previously demonstrated in 2D transition metal dichalcogenides (TMDs); however, the spatial control of dopant distribution remains an open field. In this work, edge termination is demonstrated as an important characteristic of 2D TMD monocrystals that affects the distribution of substitutional dopants. Particularly, in chemical vapor deposition (CVD)‐grown monolayer WS2, it is found that a higher density of transition metal dopants is always incorporated in sulfur‐terminated domains when compared to tungsten‐terminated domains. Two representative examples demonstrate this spatial distribution control, including hexagonal iron‐ and vanadium‐doped WS2monolayers. Density functional theory (DFT) calculations are further performed, indicating that the edge‐dependent dopant distribution is due to a strong binding of tungsten atoms at tungsten‐zigzag edges, resulting in the formation of open sites at sulfur‐zigzag edges that enable preferential dopant incorporation. Based on these results, it is envisioned that edge termination in crystalline TMD monolayers can be utilized as a novel and effective knob for engineering the spatial distribution of substitutional dopants, leading to in‐plane hetero‐/multi‐junctions that display fascinating electronic, optoelectronic, and magnetic properties.

     
    more » « less
  5. Abstract

    Numerous strategies are developed to impart stretchability to polymer semiconductors. Although these methods improve the ductility, mobility, and stability of such stretchable semiconductors, they nonetheless still need further improvement. Here, it is shown that 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) is an effective molecular additive to tune the properties of a diketopyrrolopyrrole‐based (DPP‐based) semiconductor. Specifically, the addition of F4‐TCNQ is observed to improve the ductility of the semiconductor by altering the polymer’s microstructures and dynamic motions. As a p‐type dopant additive, F4‐TCNQ can also effectively enhance the mobility and stability of the semiconductor through changing the host polymer’s packing structures and charge trap passivation. Upon fabricating fully stretchable transistors with F4‐TCNQ‐DPP blended semiconductor films, it is observed that the resulting stretchable transistors possess one of the highest initial mobility of 1.03 cm2V−1s−1. The fabricated transistors also exhibit higher stability (both bias and environmental) and mobility retention under repeated strain, compared to those without F4‐TCNQ additive. These findings offer a new direction of research on stretchable semiconductors to facilitate future practical applications.

     
    more » « less