skip to main content


Title: A Study of the Effects of Peer Tutoring in Relation to Student GPA
In the fall of 2015, Gannon University implemented a semi-mandatory peer-to-peer tutoring program within a variety of courses that have traditionally been linked to high student attrition. Some of these courses have previously been identified as critical for success in the NSF S-STEM grant in effect at the university, and thus it is of interest to determine whether students in the S-STEM program would benefit from inclusion in the peer-tutoring program. The peer-tutoring program presents a naturally occurring experiment because some sections of these courses have included the peer-to-peer tutoring program, while others have been traditionally taught without this tutoring aspect. As a result, the authors have been able to begin to assess the effectiveness of this tutoring on student performance specifically in Calculus I, Calculus II and the lowest-level Calculus-based Physics course. This study groups students by GPA at the beginning of the semester (less than 1.0, up to 1.5, up to 2.0, up to 2.5, up to 3.0, up to 3.5 and above 3.5) and within those groups gathers data on final course grade and GPA for each student at the conclusion of the semester. Comparison is made between average performance of students enrolled in peer-tutored and in traditionally-taught sections. While the results are quite preliminary, it is possible to begin to estimate (1) whether student performance in the class (as measured by final grade in the course) is affected by the tutoring, and (2) which student group or class is most strongly affected by the tutoring. In as much as there are confounding variables (such as different instructors among sections and differing levels of student motivation) that have not yet been controlled, this study is submitted as a work-in progress. While it is not a new insight to say that tutoring helps struggling but motivated students (previous studies have indicated that this peer-to-peer mentoring program has had a good effect on student success, by reducing the percentage of students receiving a final grade of D or F or withdrawing from the course for students enrolled in peer-tutored sections) the longer-term goal of this study is to determine the effectiveness of tutoring for nominally higher-performing students.  more » « less
Award ID(s):
1643869
NSF-PAR ID:
10249659
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2020 ASEE Virtual Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Student-instructor interactions have an influence on student achievement and perceptions of learning. In college and university settings, large introductory STEM courses are increasingly including Peer-Led Team Learning (PLTL), an evidence-based technique associated with improved student achievement, recruitment, and retention in STEM fields, especially for underserved populations. Within this technique, peer leaders hold a unique position in a student’s education. Peer leaders have relevant experience in that they have had recent success in the courses in which they facilitate student learning, yet, compared to student-faculty or student-teaching assistant relationships, there is minimal imbalance of authority or power. Students might find their peer leaders to be more relatable than faculty or graduate teaching assistants, and may even consider them to be role models. We explored students’ perceptions of peer leader relatability and role model status in relation to students’ achievement and their perceived learning gains in the context of an introductory biology course with an associated PLTL program. The final course grades and self-assessed learning gains of PLTL students who felt they related to their peer leader were compared to those who did not. We also compared final course grades and self-assessed learning gains between PLTL students who viewed their peer leader as a role model versus those who did not. Self-reported learning gains were significantly higher for students who relate to their peer leader, as well as for students who viewed their peer leaders as a role model. There is some support that this trend is stronger for STEM majors versus those who are not enrolled in a STEM program, though the interaction is not significant. Significant differences in overall course grade were only observed between students who reported that they related to their peer leader versus those who did not relate to their peer leader. 
    more » « less
  2. In an earlier work, the authors compared the writing style of Mechanical Engineering Technology (MET) students in an “untutored” state to the writing style of “tutored” students, where the tutoring was provided by “generic” writing center tutors. The results of this study showed that aside from changes in the diction of the students’ work, there was little measurable improvement in the quality of student writing as measured by both the AAC&U VALUE Rubric and by the authors’ voice-development-style-diction method. The current work builds on the results of the previous work by providing training on a just-in-time basis for the writing center tutors. As with previous years, the students participating in the study were MET students in a last-semester capstone industrial design course. This course is organized around a series of open-ended industry-sponsored projects for which the students are expected to develop a solution to a mechanical engineering problem. The students work on the projects in teams of three or four students and complete the work over a two-semester sequence offered annually on a fall-spring basis. The assignment in the study was identical to that of previous years: an “analysis” report in which students are expected to apply content from previous courses to one aspect of the industry-sponsored design project. The present study will compare the results from three iterations of the study: the work of “untutored” students, i.e. those who did not received any writing center assistance whatsoever, those who tutored by “generic” writing center tutors, and lastly, the works of those tutored by tutors specifically trained in support of the specific intervention. In the two cases where tutor interaction occurred, it was required as a component of the course to ensure participation by the entire student cohort. In general, the interactions with the specially-trained tutors produced works with a more mature writing style on the part of the student as compared to those works produced by students who had interacted with the untrained tutors or no tutors at all. The work will also discuss survey data collected on the “generic” and specially-trained tutoring sessions and discuss the differences in the results. Preliminary results show that the specially-trained tutors reported pronounced levels of engagement in the tutoring session, as measured by student note-taking, student questions, student receptiveness to suggestions, and student desire to understand the reasoning behind the tutors’ suggestions. Specially-trained tutors also reported significantly higher levels of student interest suggestions about grammar, style, content, format, and citations. Overall, it is concluded that specific training for the tutors was most associated with increased levels of interaction between tutor and student. As the students in the final group (“trained tutors”) were told prior to the tutoring session that the tutors were “specially trained,” it remains to be determined if the increased interaction was due to better tutor preparation or a higher estimation of the value of the tutoring session on the part of the students receiving the tutoring. This is proposed as an extension to the current work. 
    more » « less
  3. In an earlier work, the authors compared the writing style of Mechanical Engineering Technology (MET) students in an “untutored” state to the writing style of “tutored” students, where the tutoring was provided by “generic” writing center tutors. The results of this study showed that aside from changes in the diction of the students’ work, there was little measurable improvement in the quality of student writing as measured by both the AAC&U VALUE Rubric and by the authors’ voice-development-style-diction method. The current work builds on the results of the previous work by providing training on a just-in-time basis for the writing center tutors. As with previous years, the students participating in the study were MET students in a last-semester capstone industrial design course. This course is organized around a series of open-ended industry-sponsored projects for which the students are expected to develop a solution to a mechanical engineering problem. The students work on the projects in teams of three or four students and complete the work over a two-semester sequence offered annually on a fall-spring basis. The assignment in the study was identical to that of previous years: an “analysis” report in which students are expected to apply content from previous courses to one aspect of the industry-sponsored design project. The present study will compare the results from three iterations of the study: the work of “untutored” students, i.e. those who did not received any writing center assistance whatsoever, those who tutored by “generic” writing center tutors, and lastly, the works of those tutored by tutors specifically trained in support of the specific intervention. In the two cases where tutor interaction occurred, it was required as a component of the course to ensure participation by the entire student cohort. In general, the interactions with the specially-trained tutors produced works with a more mature writing style on the part of the student as compared to those works produced by students who had interacted with the untrained tutors or no tutors at all. The work will also discuss survey data collected on the “generic” and specially-trained tutoring sessions and discuss the differences in the results. Preliminary results show that the specially-trained tutors reported pronounced levels of engagement in the tutoring session, as measured by student note-taking, student questions, student receptiveness to suggestions, and student desire to understand the reasoning behind the tutors’ suggestions. Specially-trained tutors also reported significantly higher levels of student interest suggestions about grammar, style, content, format, and citations. Overall, it is concluded that specific training for the tutors was most associated with increased levels of interaction between tutor and student. As the students in the final group (“trained tutors”) were told prior to the tutoring session that the tutors were “specially trained,” it remains to be determined if the increased interaction was due to better tutor preparation or a higher estimation of the value of the tutoring session on the part of the students receiving the tutoring. This is proposed as an extension to the current work. 
    more » « less
  4. ABET lists the ability to communicate in writing to both technical and non-technical audiences as a required outcome for baccalaureate engineering students [1]. From emails and memos to formal reports, the ability to communicate is vital to the engineering profession. This Work in Progress paper describes research being done as part of an NSF-funded project, Writing Assignment Tutor Training in STEM (WATTS). The method is designed to improve feedback writing tutors without technical backgrounds give to engineering students on technical reports. Students in engineering programs have few opportunities to develop their writing skills. Usually, composition courses are part of the general education curriculum. Students often see these courses as unrelated to their majors and careers [2]. Ideally, writing support should be integrated throughout a program. Since WATTs capitalizes on existing resources and requires only a modest amount of faculty time, it could enable engineering programs to provide additional writing support to students in multiple courses and provide a bridge for them to see the connection between writing concepts learned in composition courses and their technical reports. WATTS was developed in a junior-level circuit analysis course, where students were completing the same lab and writing individual reports. This paper focuses on a senior capstone course that utilizes concepts taught in previous courses to prepare students to complete an independent team research or design project. Projects are unique, usually based on the needs of an industrial sponsor, and are completed over three consecutive semesters. Each semester, teams write a report based on their activities during that semester, with a comprehensive report in the final semester. The multi-semester nature of the senior design project provides an opportunity for the researchers to chart longitudinal changes from the first to the students’ third semester interactions with the writing tutors, assessing the value of an integrated approach. The program’s impact on students’ attitudes toward revision and the value of tutoring, as well as the impact on tutors, are part of the assessment plan. The program hopes to change the students’ focus from simply presenting their results to communicating them. The goals of the project are to demonstrate to students that revision is essential to the writing process and that feedback can improve their written communication abilities. The expectation is that after graduation they will continue to seek critical feedback as part of their career growth. Surveys given to both students and tutors revealed that the sessions were taken seriously by the students and that meaningful collaboration was achieved between them. An evaluation of the writing in pre-tutored to final submitted report shows statistically significant improvement. Preliminary and current results will be included within the paper. [1] Criteria for Accrediting Engineering Technology Programs, ABET, Baltimore, MD., 2020, p.5, ETAC Criteria (abet.org) [2] Bergmann, L. S. and Zepernick, J., “Disciplinarity and Transfer: Students’ Perceptions of Learning to Write,” Writing Program Administration, 31, Fall/Winter 2007. 
    more » « less
  5. Abstract

    Research suggests that interacting with more peers about physics course material is correlated with higher student performance. Some studies, however, have demonstrated that different topics of peer interactions may correlate with their performance in different ways, or possibly not at all. In this study, we probe both the peers with whom students interact about their physics course and the particular aspects of the course material about which they interacted in six different introductory physics courses: four lecture courses and two lab courses. Drawing on social network analysis methods, we replicate prior work demonstrating that, on average, students who interact with more peers in their physics courses have higher final course grades. Expanding on this result, we find that students discuss a wide range of aspects of course material with their peers: concepts, small-group work, assessments, lecture, and homework. We observe that in the lecture courses, interacting with peers about concepts is most strongly correlated with final course grade, with smaller correlations also arising for small-group work and homework. In the lab courses, on the other hand, small-group work is the only interaction topic that significantly correlates with final course grade. We use these findings to discuss how course structures (e.g. grading schemes and weekly course schedules) may shape student interactions and add nuance to prior work by identifying how specific types of student interactions are associated (or not) with performance.

     
    more » « less