skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: mPulse Mobile Sensing Model for Passive Detection of Impulsive Behavior: Exploratory Prediction Study
Background Mobile health technology has demonstrated the ability of smartphone apps and sensors to collect data pertaining to patient activity, behavior, and cognition. It also offers the opportunity to understand how everyday passive mobile metrics such as battery life and screen time relate to mental health outcomes through continuous sensing. Impulsivity is an underlying factor in numerous physical and mental health problems. However, few studies have been designed to help us understand how mobile sensors and self-report data can improve our understanding of impulsive behavior. Objective The objective of this study was to explore the feasibility of using mobile sensor data to detect and monitor self-reported state impulsivity and impulsive behavior passively via a cross-platform mobile sensing application. Methods We enrolled 26 participants who were part of a larger study of impulsivity to take part in a real-world, continuous mobile sensing study over 21 days on both Apple operating system (iOS) and Android platforms. The mobile sensing system (mPulse) collected data from call logs, battery charging, and screen checking. To validate the model, we used mobile sensing features to predict common self-reported impulsivity traits, objective mobile behavioral and cognitive measures, and ecological momentary assessment (EMA) of state impulsivity and constructs related to impulsive behavior (ie, risk-taking, attention, and affect). Results Overall, the findings suggested that passive measures of mobile phone use such as call logs, battery charging, and screen checking can predict different facets of trait and state impulsivity and impulsive behavior. For impulsivity traits, the models significantly explained variance in sensation seeking, planning, and lack of perseverance traits but failed to explain motor, urgency, lack of premeditation, and attention traits. Passive sensing features from call logs, battery charging, and screen checking were particularly useful in explaining and predicting trait-based sensation seeking. On a daily level, the model successfully predicted objective behavioral measures such as present bias in delay discounting tasks, commission and omission errors in a cognitive attention task, and total gains in a risk-taking task. Our models also predicted daily EMA questions on positivity, stress, productivity, healthiness, and emotion and affect. Perhaps most intriguingly, the model failed to predict daily EMA designed to measure previous-day impulsivity using face-valid questions. Conclusions The study demonstrated the potential for developing trait and state impulsivity phenotypes and detecting impulsive behavior from everyday mobile phone sensors. Limitations of the current research and suggestions for building more precise passive sensing models are discussed. Trial Registration ClinicalTrials.gov NCT03006653; https://clinicaltrials.gov/ct2/show/NCT03006653  more » « less
Award ID(s):
1700832
PAR ID:
10249755
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
JMIR Mental Health
Volume:
8
Issue:
1
ISSN:
2368-7959
Page Range / eLocation ID:
e25019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background The classic Marshmallow Test, where children were offered a choice between one small but immediate reward (eg, one marshmallow) or a larger reward (eg, two marshmallows) if they waited for a period of time, instigated a wealth of research on the relationships among impulsive responding, self-regulation, and clinical and life outcomes. Impulsivity is a hallmark feature of self-regulation failures that lead to poor health decisions and outcomes, making understanding and treating impulsivity one of the most important constructs to tackle in building a culture of health. Despite a large literature base, impulsivity measurement remains difficult due to the multidimensional nature of the construct and limited methods of assessment in daily life. Mobile devices and the rise of mobile health (mHealth) have changed our ability to assess and intervene with individuals remotely, providing an avenue for ambulatory diagnostic testing and interventions. Longitudinal studies with mobile devices can further help to understand impulsive behaviors and variation in state impulsivity in daily life. Objective The aim of this study was to develop and validate an impulsivity mHealth diagnostics and monitoring app called Digital Marshmallow Test (DMT) using both the Apple and Android platforms for widespread dissemination to researchers, clinicians, and the general public. Methods The DMT app was developed using Apple’s ResearchKit (iOS) and Android’s ResearchStack open source frameworks for developing health research study apps. The DMT app consists of three main modules: self-report, ecological momentary assessment, and active behavioral and cognitive tasks. We conducted a study with a 21-day assessment period (N=116 participants) to validate the novel measures of the DMT app. Results We used a semantic differential scale to develop self-report trait and momentary state measures of impulsivity as part of the DMT app. We identified three state factors (inefficient, thrill seeking, and intentional) that correlated highly with established measures of impulsivity. We further leveraged momentary semantic differential questions to examine intraindividual variability, the effect of daily life, and the contextual effect of mood on state impulsivity and daily impulsive behaviors. Our results indicated validation of the self-report sematic differential and related results, and of the mobile behavioral tasks, including the Balloon Analogue Risk Task and Go-No-Go task, with relatively low validity of the mobile Delay Discounting task. We discuss the design implications of these results to mHealth research. Conclusions This study demonstrates the potential for assessing different facets of trait and state impulsivity during everyday life and in clinical settings using the DMT mobile app. The DMT app can be further used to enhance our understanding of the individual facets that underlie impulsive behaviors, as well as providing a promising avenue for digital interventions. Trial Registration ClinicalTrials.gov NCT03006653; https://www.clinicaltrials.gov/ct2/show/NCT03006653 
    more » « less
  2. Background: Machine learning models often use passively recorded sensor data streams as inputs to train machine learning models that predict outcomes captured through ecological momentary assessments (EMA). Despite the growth of mobile data collection, challenges in obtaining proper authorization to send notifications, receive background events, and perform background tasks persist. Objective: We investigated challenges faced by mobile sensing apps in real-world settings in order to develop design guidelines. For active data, we compared 2 prompting strategies: setup prompting, where the app requests authorization during its initial run, and contextual prompting, where authorization is requested when an event or notification occurs. Additionally, we evaluated 2 passive data collection paradigms: collection during scheduled background tasks and persistent reminders that trigger passive data collection. We investigated the following research questions (RQs): (RQ1) how do setup prompting and contextual prompting affect scheduled notification delivery and the response rate of notification-initiated EMA? (RQ2) Which authorization paradigm, setup or contextual prompting, is more successful in leading users to grant authorization to receive background events? and (RQ3) Which polling-based method, persistent reminders or scheduled background tasks, completes more background sessions?. Methods: We developed mobile sensing apps for iOS and Android devices and tested them through a 30-day user study asking college students (n=145) about their stress levels. Participants responded to a daily EMA question to test active data collection. The sensing apps collected background location events, polled for passive data with persistent reminders, and scheduled background tasks to test passive data collection.Results: For RQ1, setup and contextual prompting yielded no significant difference (ANOVA F1,144=0.0227; P=.88) in EMA compliance, with an average of 23.4 (SD 7.36) out of 30 assessments completed. However, qualitative analysis revealed that contextual prompting on iOS devices resulted in inconsistent notification deliveries. For RQ2, contextual prompting for background events was 55.5% (χ21=4.4; P=.04) more effective in gaining authorization. For RQ3, users demonstrated resistance to installing the persistent reminder, but when installed, the persistent reminder performed 226.5% more background sessions than traditional background tasks. Conclusions: We developed design guidelines for improving mobile sensing on consumer mobile devices based on our qualitative and quantitative results. Our qualitative results demonstrated that contextual prompts on iOS devices resulted in inconsistent notification deliveries, unlike setup prompting on Android devices. We therefore recommend using setup prompting for EMA when possible. We found that contextual prompting is more efficient for authorizing background events. We therefore recommend using contextual prompting for passive sensing. Finally, we conclude that developing a persistent reminder and requiring participants to install it provides an additional way to poll for sensor and user data and could improve data collection to support adaptive interventions powered by machine learning. 
    more » « less
  3. null (Ed.)
    Recent papers demonstrate that non-traditional data, from mobile phones and other digital sensors, can be used to roughly estimate the wealth of individual subscribers. This paper asks a question more directly relevant to development policy: Can non-traditional data be used to more efficiently target development aid? By combining rich survey data from a "big push" anti-poverty program in Afghanistan with detailed mobile phone logs from program beneficiaries, we study the extent to which machine learning methods can accurately differentiate ultra-poor households eligible for program benefits from other households deemed ineligible. We show that supervised learning methods leveraging mobile phone data can identify ultra-poor households as accurately as standard survey-based measures of poverty, including consumption and wealth; and that combining survey-based measures with mobile phone data produces classifications more accurate than those based on a single data source. We discuss the implications and limitations of these methods for targeting extreme poverty in marginalized populations. 
    more » « less
  4. Continuous passive sensing of daily behavior from mobile devices has the potential to identify behavioral patterns associated with different aspects of human characteristics. This paper presents novel analytic approaches to extract and understand these behavioral patterns and their impact on predicting adaptive and maladaptive personality traits. Our machine learning analysis extends previous research by showing that both adaptive and maladaptive traits can be predicted from passively sensed behavior providing initial evidence for the utility of this type of data to study personality and its pathology. The analysis also provides insights into the underlying behavior patterns that link adaptive and maladaptive variants consistent with contemporary models of personality pathology. 
    more » « less
  5. Introduction: Impulsivity is a symptom of Attention-Deficit/Hyperactivity Disorder (ADHD) and variants in the Lphn3 (Adgrl3) gene [OMIM 616417] have been linked to ADHD. This project utilized a delay-discounting (DD) task to examine the impact of Lphn3 deletion in rats on impulsive choice. “Positive control” measures were also collected in Spontaneously Hypertensive Rats (SHRs), another animal model of ADHD. Methods: For Experiment I, rats were given the option to press one lever for a delayed reward of 3 food pellets or the other lever for an immediate reward of 1 pellet. Impulsive choice was measured as the tendency to discount the larger, delayed reward. We hypothesized that impulsive choice would be greater in the SHR and Lphn3 knockout (KO) rats relative to their control strains - Wistar-Kyoto (WKY) and Lphn3 wildtype (WT) rats, respectively. Results: The results did not completely support the hypothesis, as only the SHRs (but not the Lphn3 KO rats) demonstrated a decrease in the percent choice for the larger reward. Because subsequent trials did not begin until the end of the delay period regardless of which lever was selected, rats were required to wait for the next trial to start even if they picked the immediate lever. Experiment II examined whether the rate of reinforcement influenced impulsive choice by using a DD task that incorporated a 1 sec inter-trial interval (ITI) immediately after delivery of either the immediate (1 pellet) or delayed (3 pellet) reinforcer. The results of Experiment II found no difference in the percent choice for the larger reward between Lphn3 KO and WT rats, demonstrating reinforcement rate did not influence impulsive choice in Lphn3 KO rats. Discussion: Overall, there were impulsivity differences among the ADHD models, as SHRs exhibited deficits in impulsive choice, while the Lphn3 KO rats did not. 
    more » « less