skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Revisiting the gas kinematics in SSA22 Lyman-α Blob 1 with radiative transfer modelling in a multiphase, clumpy medium
ABSTRACT We present new observations of Lyman-α (Lyα) Blob 1 (LAB1) in the SSA22 protocluster region (z = 3.09) using the Keck Cosmic Web Imager and Keck Multi-object Spectrometer for Infrared Exploration. We have created a narrow-band Lyα image and identified several prominent features. By comparing the spatial distributions and intensities of Lyα and Hβ, we find that recombination of photo-ionized H i gas followed by resonant scattering is sufficient to explain all the observed Lyα/Hβ ratios. We further decode the spatially resolved Lyα profiles using both moment maps and radiative transfer modelling. By fitting a set of multiphase, ‘clumpy’ models to the observed Lyα profiles, we manage to reasonably constrain many parameters, namely the H i number density in the interclump medium (ICM), the cloud volume filling factor, the random velocity and outflow velocity of the clumps, the H i outflow velocity of the ICM, and the local systemic redshift. Our model has successfully reproduced the diverse Lyα morphologies, and the main results are: (1) the observed Lyα spectra require relatively few clumps per line of sight as they have significant fluxes at the line centre; (2) the velocity dispersion of the clumps yields a significant broadening of the spectra as observed; (3) the clump bulk outflow can also cause additional broadening if the H i in the ICM is optically thick; (4) and the H i in the ICM is responsible for the absorption feature close to the Lyα line centre.  more » « less
Award ID(s):
2009313 2009085 2009278
NSF-PAR ID:
10249777
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
502
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2389 to 2408
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The resonantly scattered Lyαline illuminates the extended halos of neutral hydrogen in the circumgalactic medium of galaxies. We present integral field Keck Cosmic Web Imager observations of double-peaked, spatially extended Lyαemission in 12 relatively low-mass (M∼ 109M)z∼ 2 galaxies characterized by extreme nebular emission lines. Using individual spaxels and small bins as well as radially binned profiles of larger regions, we find that for most objects in the sample the Lyαblue-to-red peak ratio increases, the peak separation decreases, and the fraction of flux emerging at line center increases with radius. We use new radiative transfer simulations to model each galaxy with a clumpy, multiphase outflow with radially varying outflow velocity, and self-consistently apply the same velocity model to the low-ionization interstellar absorption lines. These models reproduce the trends of peak ratio, peak separation, and trough depth with radius, and broadly reconcile outflow velocities inferred from Lyαand absorption lines. The galaxies in our sample are well-described by a model in which neutral, outflowing clumps are embedded in a hotter, more highly ionized inter-clump medium (ICM), whose residual neutral content produces absorption at the systemic redshift. The peak ratio, peak separation, and trough flux fraction are primarily governed by the line-of-sight component of the outflow velocity, the Hicolumn density, and the residual neutral density in the ICM respectively. The azimuthal asymmetries in the line profile further suggest nonradial gas motions at large radii and variations in the Hicolumn density in the outer halos.

     
    more » « less
  2. ABSTRACT

    JWST has recently sparked a new era of Lyα spectroscopy, delivering the first measurements of the Lyα escape fraction and velocity profile in typical galaxies at z ≃ 6−10. These observations offer new prospects for insight into the earliest stages of reionization. But to realize this potential, we need robust models of Lyα properties in galaxies at z ≃ 5−6 when the IGM is mostly ionized. Here, we use new JWST observations from the JADES and FRESCO surveys combined with VLT/MUSE and Keck/DEIMOS data to characterize statistical distributions of Lyα velocity offsets, escape fractions, and EWs in z ≃ 5−6 galaxies. We find that galaxies with large Lyα escape fractions (>0.2) are common at z ≃ 5−6, comprising 30 per cent of Lyman break selected samples. Comparing to literature studies, our census suggests that Lyα becomes more prevalent in the galaxy population towards higher redshift from z ∼ 3 to z ∼ 6, although we find that this evolution slows considerably between z ∼ 5 and z ∼ 6, consistent with modest attenuation from residual H i in the mostly ionized IGM at z ≃ 5−6. We find significant evolution in Lyα velocity profiles between z ≃ 2−3 and z ≃ 5−6, likely reflecting the influence of resonant scattering from residual intergalactic H i on the escape of Lyα emission near line centre. This effect will make it challenging to use Lyα peak offsets as a probe of Lyman continuum leakage at z ≃ 5−6. We use our z ≃ 5−6 Lyα distributions to make predictions for typical Lyα properties at z ≳ 8 and discuss implications of a recently discovered Lyα emitter at z ≃ 8.5 with a small peak velocity offset (156 km s−1).

     
    more » « less
  3. ABSTRACT

    The ionizing photon escape fraction [Lyman continuum (LyC) fesc] of star-forming galaxies is the single greatest unknown in the reionization budget. Stochastic sightline effects prohibit the direct separation of LyC leakers from non-leakers at significant redshifts. Here we circumvent this uncertainty by inferring fesc using resolved (R > 4000) Lyman α (Lyα) profiles from the X-SHOOTER Lyα survey at z = 2 (XLS-z2). With empirically motivated criteria, we use Lyα profiles to select leakers ($f_{\mathrm{ esc}} > 20{{\ \rm per\ cent}}$) and non-leakers ($f_{\mathrm{ esc}} < 5{{\ \rm per\ cent}}$) from a representative sample of >0.2L* Lyman α emitters (LAEs). We use median stacked spectra of these subsets over λrest ≈ 1000–8000 Å to investigate the conditions for LyC fesc. Our stacks show similar mass, metallicity, MUV, and βUV. We find the following differences between leakers versus non-leakers: (i) strong nebular C iv and He ii emission versus non-detections; (ii) [O iii]/[O ii] ≈ 8.5 versus ≈3; (iii) Hα/Hβ indicating no dust versus E(B − V) ≈ 0.3; (iv) Mg ii emission close to the systemic velocity versus redshifted, optically thick Mg ii; and (v) Lyα fesc of ${\approx} 50{{\ \rm per\ cent}}$ versus ${\approx} 10{{\ \rm per\ cent}}$. The extreme equivalent widths (EWs) in leakers ([O iii]+$\mathrm{ H}\beta \approx 1100$ Å rest frame) constrain the characteristic time-scale of LyC escape to ≈3–10 Myr bursts when short-lived stars with the hardest ionizing spectra shine. The defining traits of leakers – extremely ionizing stellar populations, low column densities, a dust-free, high-ionization state interstellar medium (ISM) – occur simultaneously in the $f_{\rm esc} > 20{{\ \rm per\ cent}}$ stack, suggesting they are causally connected, and motivating why indicators like [O iii]/[O ii] may suffice to constrain fesc at z > 6 with the James Webb Space Telescope (JWST). The leakers comprise half of our sample, have a median LyC$f_{\rm esc} \approx 50{{\ \rm per\ cent}}$ (conservative range: $20\!-\!55{{\ \rm per\ cent}}$), and an ionizing production efficiency $\log ({\xi _{\rm {ion}}/\rm {Hz\ erg^{-1}}})\approx 25.9$ (conservative range: 25.7–25.9). These results show LAEs – the type of galaxies rare at z ≈ 2, but that become the norm at higher redshift – are highly efficient ionizers, with extreme ξion and prolific fesc occurring in sync.

     
    more » « less
  4. null (Ed.)
    ABSTRACT We present new measurements of the spatial distribution and kinematics of neutral hydrogen in the circumgalactic and intergalactic medium surrounding star-forming galaxies at z ∼ 2. Using the spectra of ≃3000 galaxies with redshifts 〈z〉 = 2.3 ± 0.4 from the Keck Baryonic Structure Survey, we assemble a sample of more than 200 000 distinct foreground-background pairs with projected angular separations of 3–500 arcsec and spectroscopic redshifts, with 〈zfg〉 = 2.23 and 〈zbg〉 = 2.57 (foreground, background redshifts, respectively.) The ensemble of sightlines and foreground galaxies is used to construct a 2D map of the mean excess $\rm{H\,{\small I}}$$\rm Ly\,\alpha$ optical depth relative to the intergalactic mean as a function of projected galactocentric distance (20 ≲ Dtran/pkpc ≲ 4000) and line-of-sight velocity. We obtain accurate galaxy systemic redshifts, providing significant information on the line-of-sight kinematics of $\rm{H\,{\small I}}$ gas as a function of projected distance Dtran. We compare the map with cosmological zoom-in simulation, finding qualitative agreement between them. A simple two-component (accretion, outflow) analytical model generally reproduces the observed line-of-sight kinematics and projected spatial distribution of $\rm{H\,{\small I}}$. The best-fitting model suggests that galaxy-scale outflows with initial velocity vout ≃ 600 km s$^{-1}\,$ dominate the kinematics of circumgalactic $\rm{H\,{\small I}}$ out to Dtran ≃ 50 kpc, while $\rm{H\,{\small I}}$ at Dtran ≳ 100 kpc is dominated by infall with characteristic vin ≲ circular velocity. Over the impact parameter range 80 ≲ Dtran/pkpc ≲ 200, the $\rm{H\,{\small I}}$ line-of-sight velocity range reaches a minimum, with a corresponding flattening in the rest-frame $\rm Ly\,\alpha$ equivalent width. These observations can be naturally explained as the transition between outflow-dominated and accretion-dominated flows. Beyond Dtran ≃ 300 pkpc (∼1 cMpc), the line-of-sight kinematics are dominated by Hubble expansion. 
    more » « less
  5. ABSTRACT

    We present new spectroscopic observations of Ly α (Ly α) Blob 2 (z ∼ 3.1). We observed extended Ly α emission in three distinct regions, where the highest Ly α surface brightness (SB) centre is far away from the known continuum sources. We searched through the MOSFIRE slits that cover the high Ly α SB regions, but were unable to detect any significant nebular emission near the highest SB centre. We further mapped the flux ratio of the blue peak to the red peak and found it is anticorrelated with Ly α SB with a power-law index of ∼ –0.4. We used radiative transfer models with both multiphase, clumpy, and shell geometries and successfully reproduced the diverse Ly α morphologies. We found that most spectra suggest outflow-dominated kinematics, while 4/15 spectra imply inflows. A significant correlation exists between parameter pairs, and the multiphase, clumpy model may alleviate previously reported discrepancies. We also modelled Ly α spectra at different positions simultaneously and found that the variation of the inferred clump outflow velocities can be approximately explained by line-of-sight projection effects. Our results support the ‘central powering  + scattering’ scenario, i.e. the Ly α photons are generated by a central powering source and then scatter with outflowing, multiphase H  i gas while propagating outwards. The infalling of cool gas near the blob outskirts shapes the observed blue-dominated Ly α profiles, but its energy contribution to the total Ly α luminosity is less than 10 per cent, i.e. minor compared to the photoionization by star-forming galaxies and/or AGNs.

     
    more » « less