skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 9:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Title: Domain Adversarial Transfer Learning for Generalized Tool Wear Prediction
Given its demonstrated ability in analyzing and revealing patterns underlying data, Deep Learning (DL) has been increasingly investigated to complement physics-based models in various aspects of smart manufacturing, such as machine condition monitoring and fault diagnosis, complex manufacturing process modeling, and quality inspection. However, successful implementation of DL techniques relies greatly on the amount, variety, and veracity of data for robust network training. Also, the distributions of data used for network training and application should be identical to avoid the internal covariance shift problem that reduces the network performance applicability. As a promising solution to address these challenges, Transfer Learning (TL) enables DL networks trained on a source domain and task to be applied to a separate target domain and task. This paper presents a domain adversarial TL approach, based upon the concepts of generative adversarial networks. In this method, the optimizer seeks to minimize the loss (i.e., regression or classification accuracy) across the labeled training examples from the source domain while maximizing the loss of the domain classifier across the source and target data sets (i.e., maximizing the similarity of source and target features). The developed domain adversarial TL method has been implemented on a 1-D CNN backbone network and evaluated for prediction of tool wear propagation, using NASA's milling dataset. Performance has been compared to other TL techniques, and the results indicate that domain adversarial TL can successfully allow DL models trained on certain scenarios to be applied to new target tasks.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Annual Conference of the PHM Society
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical network failure management (ONFM) is a promising application of machine learning (ML) to optical networking. Typical ML-based ONFM approaches exploit historical monitored data, retrieved in a specific domain (e.g., a link or a network), to train supervised ML models and learn failure characteristics (a signature) that will be helpful upon future failure occurrence in that domain. Unfortunately, in operational networks, data availability often constitutes a practical limitation to the deployment of ML-based ONFM solutions, due to scarce availability of labeled data comprehensively modeling all possible failure types. One could purposely inject failures to collect training data, but this is time consuming and not desirable by operators. A possible solution is transfer learning (TL), i.e., training ML models on a source domain (SD), e.g., a laboratory testbed, and then deploying trained models on a target domain (TD), e.g., an operator network, possibly fine-tuning the learned models by re-training with few TD data. Moreover, in those cases when TL re-training is not successful (e.g., due to the intrinsic difference in SD and TD), another solution is domain adaptation, which consists of combining unlabeled SD and TD data before model training. We investigate domain adaptation and TL for failure detection and failure-cause identification across different lightpaths leveraging real optical SNR data. We find that for the considered scenarios, up to 20% points of accuracy increase can be obtained with domain adaptation for failure detection, while for failure-cause identification, only combining domain adaptation with model re-training provides significant benefit, reaching 4%–5% points of accuracy increase in the considered cases.

    more » « less
  2. null (Ed.)
    Abstract: Deep Learning (DL) has made significant changes to a large number of research areas in recent decades. For example, several astonishing Convolutional Neural Network (CNN) models have been built by researchers to fulfill image classification needs using large-scale visual datasets successfully. Transfer Learning (TL) makes use of those pre-trained models to ease the feature learning process for other target domains that contain a smaller amount of training data. Currently, there are numerous ways to utilize features generated by transfer learning. Pre-trained CNN models prepare mid-/high-level features to work for different targeting problem domains. In this paper, a DL feature and model selection framework based on evolutionary programming is proposed to solve the challenges in visual data classification. It automates the process of discovering and obtaining the most representative features generated by the pre-trained DL models for different classification tasks. 
    more » « less
  3. This study focuses on developing and examining the effectiveness of Transfer Learning (TL) for structural health monitoring (SHM) systems that transfer knowledge about damage states from one structure (i.e., the source domain) to another structure (i.e., the target domain). Transfer Learning (TL) is an efficient method for knowledge transfer and mapping from source to target domains. In addition, Proper Orthogonal Modes (POMs), which help classify behavior and health, provide a promising tool for damage identification in structural systems. Previous investigations show that damage intensity and location are highly correlated with POM variations for structures under unknown loads. To train damage identification algorithms based on POMs and ML, one generally needs to use multiple simulations to generate damage scenarios. The developed process is applied to a simply supported truss span in a multi-span railway bridge. TL is first used to obtain relationships between POMs for two modeled bridges: one being a source model (i.e., labeled) and the other being the target modeled bridge (i.e., unlabeled). This technique is then implemented to develop POMs for a damaged, unknown target using TL that links source and target POMs. It is shown that the trained knowledge from one bridge was effectively generalized to other, somewhat similar, bridges in the population. 
    more » « less
  4. Abstract— Despite recent progress in Reinforcement Learning for robotics applications, many tasks remain prohibitively difficult to solve because of the expensive interaction cost. Transfer learning helps reduce the training time in the target domain by transferring knowledge learned in a source domain. Sim2Real transfer helps transfer knowledge from a simulated robotic domain to a physical target domain. Knowledge transfer reduces the time required to train a task in the physical world, where the cost of interactions is high. However, most existing approaches assume exact correspondence in the task structure and the physical properties of the two domains. This work proposes a framework for Few-Shot Policy Transfer between two domains through Observation Mapping and Behavior Cloning. We use Generative Adversarial Networks (GANs) along with a cycle-consistency loss to map the observations between the source and target domains and later use this learned mapping to clone the successful source task behavior policy to the target domain. We observe successful behavior policy transfer with limited target task interactions and in cases where the source and target task are semantically dissimilar. 
    more » « less
  5. This paper proposes an evolutionary transfer learning approach (Evol-TL) for scalable quality-of-transmission (QoT) estimation in multi-domain elastic optical networks (MD-EONs). Evol-TL exploits a broker-based MD-EON architecture that enables cooperative learning between the broker plane (end-to-end) and domain-level (local) machine learning functions while securing the autonomy of each domain. We designed a genetic algorithm to optimize the neural network architectures and the sets of weights to be transferred between the source and destination tasks. We evaluated the performance of Evol-TL with three case studies considering the QoT estimation task for lightpaths with (i) different path lengths (in terms of the numbers of fiber links traversed), (ii) different modulation formats, and (iii) different device conditions (emulated by introducing different levels of wavelength-specific attenuation to the amplifiers). The results show that the proposed approach can reduce the average amount of required training data by up to13×<#comment/>while achieving an estimation accuracy above 95%.

    more » « less